Loading...
Search for: kazemzadeh--amir
0.134 seconds

    Design and Fabrication of a Microfluidic Device for the Formation of Multicellular Aggregates and Using in Tissue Engineering

    , Ph.D. Dissertation Sharif University of Technology Salehi, Sarah (Author) ; Shamloo, Amir (Supervisor) ; Kazemzadeh, Siamak (Supervisor)
    Abstract
    Three-dimensional cell culture and forming multicellular aggregates is superior over traditional monolayer approaches due to better mimicking in vivo conditions and hence functions of a tissue. A considerable amount of attention has been devoted to devising efficient methods for the rapid formation of uniform sized multicellular aggregates. Restoring cartilage to healthy state is difficult due to low cell density and hence low regenerative capacity. Currently used platforms are not compatible with clinical translation and require dedicated handling of trained personnel. However, when engineering and implanting cell microaggregates in a higher concentration, new cartilage is efficiently... 

    Experimental and Numerical Study of The Production of Alginate Microgels and Cancer Spheroids by Droplet-Based Microfluidic

    , M.Sc. Thesis Sharif University of Technology Rezaeian, Masoud (Author) ; Shamloo, Amir (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    Significant advances in biotechnology have led to the emergence of a cost-effective way with less ethical issues to study disease, organ functions, tumors, and their response to drugs besides studying on animals. Microfluidic devices and organ on a chip (tumor on a chip) were introduced to remove those obstacles. Organ on a chip is a powerful tool for studying different types of tissues and simulating diseases, especially cancers, for biological and medical applications. Organ (tumor) on a chip is considered as a smaller scale of the real organ or tumor and it causes to the real-time study of tissues and their functions more accurately. In this study, to fabricate a droplet-based... 

    Investigating the Effect of Drilling Fluid Properties and its Compositions on the Mud Loss Mechanism

    , M.Sc. Thesis Sharif University of Technology Kazemzadeh, Amir (Author) ; Shad, Saeed (Supervisor) ; Zahedi Far, Amir (Co-Supervisor)
    Abstract
    Currently, one of the most important problems in the field of drilling is the issue of drilling fluid loss in different formations. The problem of mud loss has been evident since the beginning of oil and gas well drilling operations, so that oil companies spend millions of dollars annually to solve the problem of mud loss. Problems such as pipe jamming, loss of rig production time, well blowout, loss of a large volume of drilling mud and damage to reservoir formations due to loss of drilling fluid are caused. Regarding the drilling variables, many factors cause the decrease or increase of the loss, the most important of which are the weight on the drill bit, drilling speed, the rate of... 

    Generation of Cancer Spheroids by Microfluidic Droplet Method for Tests

    , M.Sc. Thesis Sharif University of Technology Naseri, Tahoora (Author) ; Shamloo, Amir (Supervisor) ; Siamak Kazemzadeh Hannani (Co-Supervisor)
    Abstract
    Cancer spheroids are complex three-dimensional models of cancer cells that closely resemble in vivo tumors. Studying these models is essential for better understanding tumor biology, developing new drugs, and testing anti-cancer therapies. In this paper, we present a novel method for generating cancer spheroids using droplet-based microfluidics. This method is based on the formation of small droplets containing cancer cells in a microfluidic channel, which leads to the self-assembly of spheroids. We employ metal-organic framework (MOF) nanoparticles as drug carriers to enhance drug delivery to spheroids. ZIF-8, a porous MOF with the ability to load and release drugs in a controlled manner,... 

    Simulation, Design, and Fabrication of a Droplet-Based Microfluidic Device to Study The Role of Tumor Microenvironment and Drug Effects on the Behavior of Multicellular Tumor Spheroids

    , Ph.D. Dissertation Sharif University of Technology Besanjideh, Mohsen (Author) ; Shamloo, Amir (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    Despite the extensive research conducted so far to treat cancer, this disease is still one of the main causes of death worldwide. The results of recent studies reveal the importance of the tumor microenvironment in the growth, proliferation, and invasion of the primary tumor. Most common models in cancer research, such as 2-dimensional in vitro models and xenografts, do not have sufficient ability to mimic the interaction of tumors with human stromal tissue. Therefore, the implementation of 3-dimensional in vitro models with the ability to replicate tumor microenvironments is essential. In this study, a microfluidic platform has been introduced to create parallel models of the tumor... 

    Design and Optimization of a Novel Power Cycle and Seawater Freeze Desalination System by Utilizing the Cold Energy of Liquefied Natural Gas

    , Ph.D. Dissertation Sharif University of Technology Eghtesad, Amir Saman (Author) ; Afshin, Hossein (Supervisor) ; Kazemzadeh Hanani, Siamak (Supervisor)
    Abstract
    Access to potable water with standard quality is an inevitable component of human’s lives. Seawater desalination is the precedure of removing the impurities and contaminants in water to achieve the suitable quality for human consumption. Freeze desalination, by consuming relatively much lower energy compared to other techniques has shown to be a promising method for desalination. This technique requires the exertion of a cold source to the system which is then accompanied by simultaneous rejection of the impurities from the water. Regarding this, a numerical study on freeze desalination a hollow cylinder is carried out to determine the effects of the design variables such as heat flux,... 

    Design and Fabrication of an Integrated Microfluidic System for Cell Lysis, DNA Purification and Amplification in the Continuation of the Cell Isolation Stage for Biological Diagnosis Purposes

    , M.Sc. Thesis Sharif University of Technology Rahbary Moghadam, Ali (Author) ; Shamloo, Amir (Supervisor) ; Kazemzadeh Hanani, Siamak (Supervisor)
    Abstract
    Analytical biological research has gained significant attention due to the critical importance of processes such as cell separation, cell lysis, DNA purification, and amplification for disease diagnosis and genetic studies. These processes are essential in biological assays for molecular pathogen detection, immunological assessments, and studies on the effects of drugs on diseases. The objective of this research is to design and develop microfluidic systems in three main areas: cell separation, DNA extraction, and amplification for the identification of BRCA1 mutations. The cell separation platform is solely designed for simulation on a microfluidic chip, while the extraction and... 

    Design and Fabrication of a Polymeric Scaffold Mimicking Extracellular Matrix Properties with Improved Mechanical Characteristics for Tissue Engineering Application

    , M.Sc. Thesis Sharif University of Technology Soltani, Mohamad Reza (Author) ; Shamloo, Amir (Supervisor) ; Kazemzadeh Hannani,Siamak (Supervisor)
    Abstract
    Vascular tissue has a highly complex structure whose main function is to transport blood and supply oxygen and nutrients to body tissues. Because it is continuously exposed to blood flow and hemodynamic pressures, this tissue is always subject to special mechanical and biochemical conditions. Damage or obstruction in blood vessels can lead to serious cardiovascular diseases, the treatment of which requires advanced methods of reconstruction and replacement. Tissue engineering, as a novel approach for vascular tissue regeneration, has attracted significant attention. Scaffolds designed for vascular tissue engineering should not only possess mechanical properties similar to those of natural... 

    Determination of Parabolic Trough Solar Collector Efficiency Using Al2O3/Synthetic Oil Nanofluid: A Comprehensive Numerical Study with The Effect of Wind Velocity

    , Ph.D. Dissertation Sharif University of Technology Khakrah, Hamid Reza (Author) ; Shamloo, Amir (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    Due to significant reduction in fossil fuel sources; several researches have been conducted recently to explore modern sources of renewable energy. One of the major fields in the category of renewable energy harnessing devices is parabolic trough solar collectors (PTC). Several parameters have effect on the overall efficiency of the PTC’s.As the effect of these parameters is coupled to each other, a comprehensive investigation is necessary.In the present study a numerical analysis is performed to examine the efficiency of PTCs via variation of several governing parameters (e.g. wind velocity magnitude, nanoparticles volume fraction, inlet temperature and reflector’s orientation). A detailed... 

    Numerical Simulation of Multi Stage Pulse Tube Refrigerators

    , M.Sc. Thesis Sharif University of Technology Ghahremani, Amir Reza (Author) ; Saeedi, Mohammad Hassan (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    Multi stage Pulse Tube Cryocoolers (PTCs) have found the interest of researchers due to its reliability, long life and absence of moving part. This thesis represents a comprehensive numerical simulation method to investigate one and two stage PTC. All components of the PTC are modeled employing the nodal analysis technique to discretize the mass, momentum and energy conservation equations. SUTPTC code has been developed in cryocooler laboratory of Sharif University of Technology (SUT) to analyze and optimize one and two stage cryocooler performance. The SUTPTC code has been validated with the existing experimental data. Employing the proposed code, the effect of precooling temperature, the... 

    Comparison of dual Porosity-Dual Permeability Models in 2D Two-Phase Immiscible Flows under Gravitational Effect

    , M.Sc. Thesis Sharif University of Technology Kohanpur, Amir Hossein (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor) ; Kazemzadeh Hannani, Siamak (Co-Advisor)
    Abstract
    Physics of the present work is 2D two-phase immiscible flow under gravitational effect through fractured porous media and the most practical formulas for transfer function in dual porosity-dual permeability models have been implemented for numerical simulation of naturally fractured reservoir. The models are: Kazemi et al. (1976), Gilman (1986), Sonier et al. (1988), Quandalle and Sabathier (1989), Lim and Aziz (1995), and Rangel-German and Kovscek (2006), which are compared using a benchmark problem and the effects of gravity, capillary, number of matrix block subdomains and dual continuum media model are studied. The benchmark problem was adopted from Gilman (1986) and involves water... 

    A general model for I/O system theory, Proceedings of AIMC31 [electronic resource]

    , Article Iranian Journal of Fuzzy Systems ; 2006, Volume 3, Issue 2, Page 1-19 Daneshgar, A. (Amir) ; Hashem, Amir ; Sharif University of Technology

    Incompressible stokes flow calculation using a finite point method

    , Article Scientia Iranica ; Volume 10, Issue 1 , 2003 , Pages 44-55 ; 10263098 (ISSN) Kazemzadeh, S. H ; Parsinejad, F ; Sharif University of Technology
    Sharif University of Technology  2003
    Abstract
    In this paper, a finite point method is employed to solve the incompressible laminar Stokes flow. A moving least-squares approximation, using linear and quadratic basis functions, in conjunction with a point collocation method, has been utilized to discretize the governing equations. Two examples, including the driven cavity and the fully developed channel flow, are solved showing the accuracy and applicability of the method. In summary, the solutions for the linear basis case exhibit a large sensitivity to the size of the domain of influence of the weighting function, in contrast to the quadratic basis case  

    Experimental and Numerical Investigation of Engine Performance Parameters with Spark Timing Alteration to Minimize the Vibration (Knock Index).

    , M.Sc. Thesis Sharif University of Technology Izadi, Reza (Author) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    In this thesis, engine performance parameters such as power, torque, fuel consumption and in-cylinder pressure are investigated with considering ignition timing in order to achieve the minimum value of knock index. The implemented methods include engine dynamometer tests and simulating vehicle powertrain in GT- POWER software. Based on the acceptable precision of the GT-POWER model, it can be used to predict the engine performance in other ignition timings. Final results prove that for wide open throttle status altering the ignition timing to reach the minimum possible value impact differently on the engine performance so that in low engine speeds for basic and new ignition timings, a... 

    A novel method for producing unequal sized droplets in micro- and nanofluidic channels

    , Article European Physical Journal E ; Volume 38, Issue 9 , September , 2015 ; 12928941 (ISSN) Bedram, A ; Moosavi, A ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    Abstract: We propose a novel method for producing unequal sized droplets through breakup of droplets. This method does not have the disadvantages of the available methods and also reduces the dependence of the droplets volume ratio on the inlet velocity of the system by up to 26 percent. The employed method for investigating the proposed system relies on 3D numerical simulation using the VOF algorithm and the results have been obtained with various valve ratios for both the micro- and nanoscale. The results indicate that the droplet length during the breakup process increases linearly with time. The droplet length at the nanoscale is smaller than that at the micro scale. It has been shown... 

    Exergy analysis of parabolic trough solar collectors using Al2O3/synthetic oil nanofluid

    , Article Solar Energy ; Volume 173 , 2018 , Pages 1236-1247 ; 0038092X (ISSN) Khakrah, H ; Shamloo, A ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Parabolic trough solar collector (PTC) is one of the most mature and widely used type of solar energy harnessing devices. Therefore, investigation of the effect of various operational conditions on the overall efficiency of these devices has been topic of substantial interest in the recent decade. Moreover, utilization of nanoparticles as a useful additive to the working fluid should be examined thoroughly to optimize the collector's outputs. To do so, in the present study, energy and exergy efficiencies of a typical PTC as a function of several involving parameters are numerically calculated. These parameters are nanoparticle volume fraction (from 0 to 5 percent), environment wind speed... 

    Molecular dynamics study of friction reduction of two-phase flows on surfaces using 3d hierarchical nanostructures

    , Article Journal of Physical Chemistry C ; 2019 ; 19327447 (ISSN) Saleki, O ; Moosavi, A ; Kazemzadeh Hannani, S ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    The use of superhydrophobic surfaces is one the most promising methods for reducing the friction and increasing the flow rate in fluid transfer systems. Because in such systems the surface structure plays a key role, in this study, we explore the performance of the hierarchical nanostructures. These nanostructures are inspired by the superhydrophobic surface of the lotus leaf. We consider a flow between two walls with hierarchical nanostructures and simulate the system via the molecular dynamics method. The size of the nanostructures and the distance between them have been studied to find whether a design with a maximum flow rate exists. The nanostructures have two parts, a bigger part on... 

    Simulation of water purification using magnetically ultra-responsive micro- and nanoscavengers

    , Article Journal of Water Process Engineering ; Volume 24 , 2018 , Pages 63-73 ; 22147144 (ISSN) Asghari, E ; Moosavi, A ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Access to clean water is one of the challenges of the 21st century. Thus water purification is inevitable. One method of water treatment is purification by magnetic particles in the presence of magnetic field. The contaminants are attached to the magnetic particles and then by applying a magnetic field, magnetic particles and, thus, the pollutants can be collected. For the optimal design of a water treatment system, the effect of important parameters in the design, such as magnetic fields, particle size, and Reynolds number are determined numerically by modeling and simulating the water treatment process. Two methods are used to create the magnetic field: permanent magnet and coils. It is... 

    Enhanced oil-in-water droplet generation in a T-junction microchannel using water-based nanofluids with shear-thinning behavior: A numerical study

    , Article Physics of Fluids ; Volume 33, Issue 1 , 2021 ; 10706631 (ISSN) Besanjideh, M ; Shamloo, A ; Kazemzadeh Hannani, S ; Sharif University of Technology
    American Institute of Physics Inc  2021
    Abstract
    Nanofluids are widely used as the continuous phase during droplet formation in microsystems due to their impressive features such as excellent thermal, magnetic, and interfacial properties. Although it is well-known that nanofluids are susceptible to exhibit non-Newtonian behavior even at a low concentration of nanoparticles, effects of non-Newtonian behavior of nanofluids have not been studied on droplet formation thus far. In this study, oil-in-water droplet formation with a relatively high viscosity ratio of the immiscible phases was studied numerically in a T-junction microchannel. To inspect the non-Newtonian effects of aqueous nanofluids on droplet formation, empirical data on the... 

    Energy, exergy, exergoeconomic, and economic analysis of a novel power generation cycle integrated with seawater desalination system using the cold energy of liquified natural gas

    , Article Energy Conversion and Management ; Volume 243 , 2021 ; 01968904 (ISSN) Eghtesad, A ; Afshin, H ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Utilizing the cold energy of liquefied natural gas can reduce the demand of burning fossil fuels for work production and employing refrigeration cycles for seawater desalination. A novel low-temperature cascade power generation cycle combined with a seawater freeze desalination system is proposed to retrieve the cold energy from liquified natural gas. Binary working fluids are utilized to decrease the irreversibilities of the power cycle and enhance the energy recovery efficiency. The effects of the important temperatures of the cycle, pinch temperature of the heat exchangers, number of turbines and their efficiency on the cycle performance are investigated. Optimization of the work...