Loading...
Search for:
kazerooni--a
0.44 seconds
Total 13814 records
Plasmonic fractals: Ultrabroadband light trapping in thin film solar cells by a Sierpinski nanocarpet
, Article Optical and Quantum Electronics ; Vol. 46, issue. 6 , 2014 , pp. 751-757 ; ISSN: 03068919 ; Khavasi, A ; Sharif University of Technology
2014
Abstract
Plasmonic Sierpinski nanocarpet as back structure for a thin film Si solar cell is investigated. We demonstrate that ultra-broadband light trapping can be obtained by placing square metallic nanoridges with Sierpinski pattern on the back contact of the thin film solar cell. The multiple-scale plasmonic fractal structure allows excitation of localized surface plasmons and surface plasmon polaritons in multiple wavelengths leading to obvious absorption enhancements in a wide frequency range. Full wave simulations show that 109 % increase of the short-circuit current density for a 200 nm thick solar cell, is achievable by the proposed fractal back structure. The amount of light absorbed in the...
A continuum-atomistic multi-scale technique for nonlinear behavior of nano-materials
, Article International Journal of Mechanical Sciences ; Volume 148 , 2018 , Pages 191-208 ; 00207403 (ISSN) ; Sameti, A. R ; Kazerooni, Y. N ; Sharif University of Technology
Elsevier Ltd
2018
Abstract
In this paper, a hierarchical RVE-based continuum-atomistic multi-scale procedure is developed to model the nonlinear behavior of nano-materials. The atomistic RVE is accomplished in consonance with the underlying atomistic structure, and the inter-scale consistency principals, i.e. kinematic and energetic consistency principals, are exploited. To ensure the kinematic compatibility between the fine- and coarse-scales, the implementation of periodic boundary conditions is elucidated for the fully atomistic method. The material properties of coarse-scale are modeled with the nonlinear finite element method, in which the stress tensor and tangent modulus are computed using the Hill-Mandel...
Electrodeposition of the Ni-P by Pulse Plating
, M.Sc. Thesis Sharif University of Technology ; Dolati, Abolghasem (Supervisor)
Abstract
Ni-P alloy coatings were electrodeposited using pulse current in a watt type bath in various conditions. The influences of different parameters were investigated and optimized for the highest amount of coating hardness using the Design Of Experiment (DOE) method. The optimized deposition parameters were current density 23.7 A/dm2, duty cycle 75%, frequency equal to 188 Hz, temperature equal to 70ºC and 17.5 gr/l of H3PO3. The DOE prediction of hardness for the optimized coatings was between 700 and 750 the achieved micro-hardness was about 725.8 HV. It was obtained that an increase of the current density will improve micro-hardness, decreases P content and increase deposition rate. Also, the...
Effect of traffic-load dependent vehicle routing algorithm on the connectivity in VANETs
, Article IEEE Vehicular Technology Conference, 15 May 2011 through 18 May 2011 ; May , 2011 , Page(s): 1 - 5 ; 15502252 (ISSN) ; 9781424483310 (ISBN) ; Ashtiani, F ; Sharif University of Technology
2011
Abstract
In this paper, we evaluate how traffic-load dependent vehicle routing at intersections is able to improve the connectivity status of all streets. To this end, we consider a VANET scenario, comprised of several streets and intersections. Then, we focus on two vehicle routing algorithms, one based on the distance to destination, i.e., traffic-load independent (TLI) algorithm, and another one based on both distance to destination and traffic load status of the local streets, i.e., traffic-load dependent (TLD) algorithm. By employing a simple mobility model based on an open BCMP queueing network, we derive the spatial traffic distribution at two cases. Afterwards, we propose a simple algorithm...
Modeling and Design of CCHP System for Sharif Energy Research Institute
, M.Sc. Thesis Sharif University of Technology ; Sabbohi, Yadollah (Supervisor)
Abstract
The aim of the present research project has been techno-economical analysis of using a CCHP (Combined Cooling Heating and Power) technology at the building of Sharif Energy Research Institute (SERI). The CCHP at SERI is supposed to supply energy required at the building. Useful energy demand at the building include heating in winter, cooling and air conditioning in summer, lighting and power requirement of electric appliance and equipments. Since there are many technologies that could be utilized as CCHP, an optimal model of energy supply system of the building has been developed in order to identify the most appropriate technology. The application of model has enabled techno logical...
Experimental evaluation of ship squat in shallow waters
, Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Vol. 36, Issue. 3 , 2014 , pp. 559-569 ; ISSN: 1806-3691 ; Seif, M. S ; Sharif University of Technology
2014
Abstract
Enlargement of ship size in recent decades and no change in the harbors and approach channels have resulted in global attention toward navigation in shallow and confined waters. A phenomenon which restricts ship navigation in shallow waters is reduction of under-keel clearance in terms of sinkage and dynamic trim, which is called squatting. Due to the complexity of flow around the ship hull, one of the best methods for predicting the ship squat is the experimental approach based on systematic model tests in the towing tank. In this study, model tests for tanker ship model and traditional Persian Gulf and Oman Sea vessel called dhow had been performed in the towing tank and the squat of the...
Experimental study of a tanker ship squat in shallow water
, Article Jurnal Teknologi (Sciences and Engineering) ; Vol. 66, Issue. 2 , 2014 , pp. 15-20 ; ISSN: 01279696 ; Seif, M. S ; Sharif University of Technology
2014
Abstract
One of the phenomena restricting the tanker navigation in shallow waters is reduction of under keel clearance in the terms of sinkage and dynamic trim that is called squatting. According to the complexity of flow around ship hull, one of the best methods to predict the ship squat is experimental approach based on model tests in the towing tank. In this study model tests for tanker ship model had been held in the towing tank and squat of the model are measured and analyzed. Based on experimental results suitable formulae for prediction of these types of ship squat in fairways are obtained
Simulation of turbulent flow through porous media employing a v2f model
, Article Scientia Iranica ; Volume 16, Issue 2 B , 2009 , Pages 159-167 ; 10263098 (ISSN) ; Kazemzadeh Hannani, S ; Sharif University of Technology
2009
Abstract
In this article, a v2f model is employed to conduct a series of computations of incompressible flow in a periodic array of square cylinders simulating a porous media. A Galerkin/least-squares finite element formulation employing equal order velocity-pressure elements is used to discretize the governing equations. The Reynolds number is varied from 1000 to 84,000 and different values of porosities are considered in the calculations. Results are compared to the available data in the literature. The v2f model exhibits superior accuracy with respect to κ - ε results and is closer to LES calculations. The macroscopic pressure gradients for all porosities studied showed a good agreement with...
On the scale effects of resistance model tests of high-speed monohulls
, Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 41, Issue 4 , 2019 ; 16785878 (ISSN) ; Seif, M. S ; Sharif University of Technology
Springer Verlag
2019
Abstract
Scaled model test in towing tank is a common method to predict the ship resistance in calm water. The scale effects are dominant in these tests because the Reynolds and Froude numbers of the model and full-scale ship cannot be equal. There is a sufficient amount of knowledge about the displacement hulls which have limited speed ranges in most cases. However, scarcity of published data on high-speed crafts is noticed. The influence of the model length on ship resistance varies in different speeds, so it should be studied in more detail. The extrapolation method of model ship resistance to full scale is studied in this paper for high-speed monohulls. Resistance model tests of semi-displacement...
Simulation of turbulent flow through porous media employing a v2f model
, Article AIP Conference Proceedings- International Conference on Computational Methods in Science and Engineering 2007, ICCMSE 2007, Corfu, 25 September 2007 through 30 September 2007 ; Volume 963, Issue 2 , 2007 , Pages 1257-1260 ; 0094243X (ISSN) ; 9780735404786 (ISBN) ; Kazemzadeh Hannani, S ; Sharif University of Technology
2007
Abstract
In this article a v2f model is employed to conduct a series of computations of incompressible flow in a periodic array of square cylinders simulating a porous media. Galerkin/Least-Squares finite element formulation employing equal order velocity-pressure elements is used to discretize the governing equations. The Reynolds number is varied from 1000 to 50,000 and different values of porosities are considered in the calculations. Results are compared with the available data in the literature. v2f model exhibits superior accuracy with respect to k - ε results and is closer to LES calculations. The macroscopic pressure gradients for all porosities studied, showed a good agreement with...
Numerical Simulation of Displacement of the Fluid Phases in Porous Media
, M.Sc. Thesis Sharif University of Technology ; Moosavi, Ali (Supervisor)
Abstract
Nowadays, oil has an important role in our life and most of its role can be seen on the transportation. Discovering and extraction of oil are very important to produce oil and receive it to costumer. When oil is discovered, the oil companies used to drill the ground to extract the oil but they can’t extract all of oil from its reservoir. So, researchers proposed to inject another fluid like water to the oil reservoir to extract oil. Oil is trapped in the porous media which has a lot of pores and some of them have a micro scale size and they contain oil. When water is injected to the reservoir it flows in this pore and interfaces with oil and they create a multiphase flow. The governing...
Modeling the Nonlinear Behavior of Nano-Materials Via Hierarchical RVE-based Multi-Scale Method
, M.Sc. Thesis Sharif University of Technology ; Khoei, Amir Reza (Supervisor)
Abstract
In this paper, a hierarchical RVE-based continuum-atomistic multiscale framework is established on the basis of the nonlinear finite element method and molecular dynamics simulation in order to model the geometric and material nonlinearities of deformable solids. In this framework, the coarse scale material properties required for nonlinear finite element method are directly exploited via fine scale atomistic simulation of atomic RVEs designated for each coarse scale integration point and required boundary conditions for atomic RVE simulation are achieved from the coarse scale kinematical response. In order to ensure the kinematical and energetic consistency between the two scales, the...
Nanostructured ternary composites of PPy/CNT/NiFe2O4 and PPy/CNT/CoFe2O4: Delineating and improving microwave absorption
, Article Comptes Rendus Chimie ; Volume 21, Issue 9 , 2018 , Pages 862-871 ; 16310748 (ISSN) ; Kheirjou, S ; Asgari, S ; Kazerooni, H ; Sharif University of Technology
Elsevier Masson SAS
2018
Abstract
Two different ternary nanocomposites, PPy/CNT/CoFe2O4 and PPy/CNT/NiFe2O4, were synthesized by in situ polymerization method. The resulting composites were characterized using Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction. They were evaluated with the aim of investigating microwave absorption properties. The results showed that the value of microwave reflection decreases as that of prepared nanocomposites increases. This happens with increase in the PPy content and polymerization on the surface. © 2018 Académie des sciences
Maneuvering & Dynamic Stability Study of Planing Hulls
, Ph.D. Dissertation Sharif University of Technology ; Seif, Mohammad Saeed (Supervisor)
Abstract
Planing hulls have been under rapid development during recent years and their maximum speed has increased significantly thanks to advancements in high power engines and light weight hull construction methods. In the past two decades, the main concern have been hydrodynamic characteristics and stability of the planing hulls in straight-line motion in calm and rough water, and no applied mathematical model is proposed for their dynamic motions in different maneuvers in contrast to displacement hulls. Moreover, control loss at high speeds is very prevalent and in most cases this leads to economy and human losses. The main target of this thesis is to develop and validate a mathematical model to...
Intelligent semi-active vibration control of eleven degrees of freedom suspension system using magnetorheological dampers
, Article Journal of Mechanical Science and Technology ; Volume 26, Issue 2 , 2012 , Pages 323-334 ; 1738494X (ISSN) ; Sarrafan, A ; Khayyat, A. A. A ; Zabihollah, A ; Sharif University of Technology
2012
Abstract
A novel intelligent semi-active control system for an eleven degrees of freedom passenger car's suspension system using magnetorheological (MR) damper with neuro-fuzzy (NF) control strategy to enhance desired suspension performance is proposed. In comparison with earlier studies, an improvement in problem modeling is made. The proposed method consists of two parts: a fuzzy control strategy to establish an efficient controller to improve ride comfort and road handling (RCH) and an inverse mapping model to estimate the force needed for a semi-active damper. The fuzzy logic rules are extracted based on Sugeno inference engine. The inverse mapping model is based on an artificial neural network...
Performance and exhaust emission characteristics of a spark ignition engine operated with gasoline and CNG blend
, Article Proceedings of the Spring Technical Conference of the ASME Internal Combustion Engine Division ; 2012 , Pages 179-187 ; 15296598 (ISSN) ; 9780791844663 (ISBN) ; Hamidi, A. A ; Mozafari, A. A ; Sharif University of Technology
2012
Abstract
Using CNG as an additive for gasoline is a proper choice due to higher octane number of CNG enriched gasoline with respect to that of gasoline. As a result, it is possible to use gasoline with lower octane number in the engine. This would also mean the increase of compression ratio in SI engines resulting in higher performance and lower gasoline consumption. Over the years, the use of simulation codes to model the thermodynamic cycle of an internal combustion engine have developed tools for more efficient engine designs and fuel combustion. In this study, a thermodynamic cycle simulation of a conventional four-stroke spark-ignition engine has been developed. The model is used to study the...
A comparative study of the performance of a SI engine fuelled by natural gas as alternative fuel by thermodynamic simulation
, Article 2009 ASME Internal Combustion Engine Division Fall Technical Conference, ICEF 2009, Lucerne, 27 September 2009 through 30 September 2009 ; 2009 , Pages 49-57 ; 9780791843635 (ISBN) ; Hamidi, A. A ; Mozafari, A. A ; Sharif University of Technology
American Society of Mechanical Engineers (ASME)
2009
Abstract
With the declining energy resources and increase of pollutant emissions, a great deal of efforts has been focused on the development of alternatives for fossil fuels. One of the promising alternative fuels to gasoline in the internal combustion engine is natural gas [1-5]. The application of natural gas in current internal combustion engines is realistic due to its many benefits. The higher thermal efficiency due to the higher octane value and lower exhaust emissions including CO2 as a result of the lower carbon to hydrogen ratio of the fuel are the two important feature of using CNG as an alternative fuel. It is well known that computer simulation codes are valuable economically as a cost...
Analytical and experimental analyses of nonlinear vibrations in a rotary inverted pendulum
, Article Nonlinear Dynamics ; Volume 107, Issue 3 , 2022 , Pages 1887-1902 ; 0924090X (ISSN) ; Pasharavesh, A ; Khayyat, A. A. A ; Sharif University of Technology
Springer Science and Business Media B.V
2022
Abstract
Gaining insight into possible vibratory responses of dynamical systems around their stable equilibria is an essential step, which must be taken before their design and application. The results of such a study can significantly help prevent instability in closed-loop stabilized systems by avoiding the excitation of the system in the neighborhood of its resonance. This paper investigates nonlinear oscillations of a rotary inverted pendulum (RIP) with a full-state feedback controller. Lagrange’s equations are employed to derive an accurate 2-DoF mathematical model, whose parameter values are extracted by both the measurement and 3D modeling of the real system components. Although the governing...
A suction-controlled ring device to measure the coefficient of lateral soil pressure in unsaturated soils
, Article Geotechnical Testing Journal ; Volume 44, Issue 1 , 2020 ; Garakani, A. A ; Golshani, A ; Mirzaii, A ; Sharif University of Technology
ASTM International
2020
Abstract
A suction-controlled ring device has been developed to continuously measure the coefficient of lateral soil pressure in deformable unsaturated soil samples from the at-rest to the active condition under application of increasing vertical pressure and controlled matric suction. The device incorporates a thin aluminum specimen ring equipped with horizontal strain gages for recording the lateral soil strains. In addition, a sensor recording water volume changes is utilized to continuously monitor the degree of saturation of the soil sample during tests. The matric suction within the soil texture is controlled using the axis translation technique. In order to verify the performance of the ring...
Gum tragacanth gels as a new supporting matrix for immobilization of whole-cell
, Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 24, Issue 4 , 2005 , Pages 1-7 ; 10219986 (ISSN) ; Vaziri, A ; Seifkordi, A. A ; Kheirolomoom, A ; Sharif University of Technology
2005
Abstract
We introduce a new smooth, non-toxic, biocompatible method for cross-linking of gum tragacanth (GT), a polysaccharide of natural origin, in order to serve as a new supporting matrix for immobilization systems. The modified gum is used as a matrix for the catalysis of the conversion of benzyl penicillin to 6-aminopenicillanic acid (6-APA) by means of Escherichia coli ATCC11105 with penicillin G acylase (PGA) activity. The results show that GT beads can not only serve as a proper matrix for immobilization, but show enhanced hydrolysis rate and stability compared to other immobilization systems used for this reaction. This signifies the potential of GT as a biocompatible matrix for...