Loading...
Search for: keshavarzi--m
0.102 seconds

    A novel approach for recovering 2-valued independent sparse components from whitened data in noisy environments

    , Article Proceedings - 2016 UKSim-AMSS 18th International Conference on Computer Modelling and Simulation, UKSim 2016, 6 April 2016 through 8 April 2016 ; 2016 , Pages 155-160 ; 9781509008889 (ISBN) Keshavarzi, M ; Bayat, S ; Keshavarzi, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    Some sources transmit periodic and quasi periodic sparse pulse trains in the environment and a number of sensors might receive them through a single channel simultaneously. It is usually our interest to know which pulse belongs to which source. This identification process has wide applications in communications, radar system, medical applications, and neural systems. Blind source separation (BSS) is one solution for this problem. This paper proposed a geometrical approach to solve BSS problem when observations are whitened data and are obtained from the linear mixtures of 2-valued sparse signals (such as sparse pulse trains). In other words, the proposed approach aims to estimate a rotation... 

    Modeling of propane dehydrogenation in a two zone fluidized bed reactor

    , Article 18th International Congress of Chemical and Process Engineering, CHISA 2008, Prague, 24 August 2008 through 28 August 2008 ; 2008 Keshavarzi, S ; Kazemeini, M ; Sharif University of Technology
    2008
    Abstract
    A new reactor technology is used for propane dehydrogenation over a Cr 2O 3/Al 2O 3 catalyst. This reactor allows the continuous regeneration of the catalyst, but avoids the transfer of large amounts of solid between two reactors. Good similarity between experimental work and the model is realized. This is an abstract of a paper presented at the 18th International Congress of Chemical and Process Engineering (Prague, Czech Republic 8/24-28/2008)  

    A simple geometrical approach for deinterleaving radar pulse trains

    , Article Proceedings - 2016 UKSim-AMSS 18th International Conference on Computer Modelling and Simulation, UKSim 2016, 6 April 2016 through 8 April 2016 ; 2016 , Pages 172-177 ; 9781509008889 (ISBN) Keshavarzi, M ; Pezeshk, A. M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    Some periodic and quasi-periodic pulse trains are emitted by different sources in the environment and a number of sensors receive them through a single channel simultaneously. We are often interested in separating these pulse trains for source identification at sensors. This identification process is termed as deinterleaving pulse trains. Deinterleaving pulse trains has wide applications in communications, radar systems, neural systems, biomedical engineering, and so on. This paper studies the deinterleaving problem with the assumption that both sources and sensors are fixed. In this study, the problem of deinterleaving pulse trains is modeled as a blind source separation (BSS) problem. To... 

    Immobilization of Au nanoparticles on poly(glycidyl methacrylate)-functionalized magnetic nanoparticles for enhanced catalytic application in the reduction of nitroarenes and Suzuki reaction

    , Article Applied Organometallic Chemistry ; Volume 34, Issue 10 , 2020 Pourjavadi, A ; Kohestanian, M ; Keshavarzi, N ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    We report a novel strategy for the synthesis of magnetic nanocomposite for highly efficient catalysis. Poly(glycidyl methacrylate) (PGMA) chains were grafted to the surface of magnetic nanoparticles (MNPs) through surface-initiated reversible addition-fragmentation chain transfer polymerization. Then, the oxirane rings in the PGMA chains were opened with 2,6-diamino pyridine (DAP) molecules as ligands to prepare the solid support. Finally, this magnetic nanocomposite was used for the immobilization of gold nanoparticles. Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, transmission electron microscopy, scanning electron microscopy, gel permeation... 

    A new method for detection of complex Pulse Repetition Interval Modulations

    , Article International Conference on Signal Processing Proceedings, ICSP ; Volume 3 , 2012 , Pages 1705-1709 ; 9781467321945 (ISBN) Keshavarzi, M ; Pezeshk, A. M ; Farzaneh, F ; Sharif University of Technology
    2012
    Abstract
    In an electronic warfare environment, an electronic support system receives signals emitted by different radars. One of the key tasks in an electronic support system is detection of Pulse Repetition Interval Modulation for these signals. In this paper we present a new robust and yet simple method for detection of complex PRI Modulation. Simulation results show that the proposed method is more robust against noise (spurious and missing pulses) and unwanted jitter than previous methods  

    Correction to: conventional and two step sintering of PZT-PCN ceramics

    , Article Applied Physics A: Materials Science and Processing ; Volume 124, Issue 2 , February , 2018 , No. 177 ; 09478396 (ISSN) Keshavarzi, M ; Rahmani, H ; Nemati, A ; Hashemi, M ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    The original version of this article unfortunately contained a mistake. The presentation of Eq. 1,2, and 3 was incorrect.The correct versions are given below. The original article has been corrected. (Formula Presented.) (1) (Formula Presented.) (2) (Formula Presented.) (3). © 2018, Springer-Verlag GmbH Germany, part of Springer Nature  

    Conventional and two step sintering of PZT-PCN ceramics

    , Article Applied Physics A: Materials Science and Processing ; Volume 124, Issue 2 , February , 2018 ; 09478396 (ISSN) Keshavarzi, M ; Rahmani, H ; Nemati, A ; Hashemi, M ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    In this study, PZT-PCN ceramic was made via sol–gel seeding method and effects of conventional sintering (CS) as well as two-step sintering (TSS) were investigated on microstructure, phase formation, density, dielectric and piezoelectric properties. First, high quality powder was achieved by seeding method in which the mixture of Co3O4 and Nb2O5 powder was added to the prepared PZT sol to form PZT-PCN gel. After drying and calcination, pyrochlore free PZT-PCN powder was synthesized. Second, CS and TSS were applied to achieve dense ceramic. The optimum temperature used for 2 h of conventional sintering was obtained at 1150 °C; finally, undesired ZrO2 phase formed in CS procedure was removed... 

    Design, analysis and manufacturing a double wishbone suspension system with variable camber angle by pneumatics mechanism

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011 ; Volume 7, Issue PARTS A AND B , 2011 , Pages 477-483 ; 9780791854938 (ISBN) Pourshams, M ; Mokhlespour, M. I ; Keshavarzi, A ; Hoviat Talab, M ; ASME ; Sharif University of Technology
    2011
    Abstract
    The accuracy of multi dimensional simulation of vehicle dynamics has been significantly increased for both passive and active vehicles which are equipped with advanced electronic components. Recently, one of the subjects that has been considered is increasing the car safety in design. Therefore, many efforts have been done to increase vehicle stability especially during the turn. It is also very important in three wheel car. One of the most important efforts is adjusting the camber angle in the car suspension system. Camber angle as well as the vehicle stability has major effects on the wheel slip, reducing rubber abrasion, acceleration and braking. Since the increase or decrease in the... 

    A robust method for recognition of complicated pulse repetition interval modulations

    , Article IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences ; Volume E96-A, Issue 11 , 2013 , Pages 2306-2310 ; 09168508 (ISSN) Keshavarzi, M ; Pezeshk, A. M ; Farzaneh, F ; Amiri, D ; Sharif University of Technology
    2013
    Abstract
    After receiving emitted signals from various radars by electronic support measures (ESM) system, several processes are applied to signals such as: deinterleaving, recognition of pulse repetition interval (PRI) modulation, PRI estimation and etc. Indeed, recognition of PRI modulation is an essential task of ESM system. In this paper a novel and robust method for recognition of complicated PRI Modulations is presented. This method uses specifications such as distribution related to members of sequences obtained from first and second order derivation of TOAs around a constant value and continuity of these sequences to recognize the PRI modulation. Some numerical simulations are performed to... 

    The Effect of Earthquake Repeated Cycles in Performance Based Design Methodology Utilizing Energy Concept

    , M.Sc. Thesis Sharif University of Technology Keshavarzi, Behrooz (Author) ; Bakhshi, Ali (Supervisor)
    Abstract
    Due to structural and nonstructural damage after the occurrence of Northridge 1994 and Kobe 1995 earthquakes, Seismic design basics was modified and philosophy of performance based design was suggested. In this novel solution, Predefined limitations are considered. Performance criteria were usually related to displacement or other correlated factors such as hinge plastic rotation. All the mentioned limitations are related to different damage states.Most of the codes and articles use following assumptions for assessing structural performance: 1) considering first vibrational mode for structural response to any seismic excitation regardless of seismic input acceleration records or structural... 

    Preparation of poly (acrylic acid) microgels by alcohol type cross-linkers and a comparison with other cross-linking methods

    , Article Polymer Bulletin ; 2021 ; 01700839 (ISSN) Kohestanian, M ; Bouhendi, H ; Keshavarzi, N ; Mahmoudi, M ; Pourjavadi, A ; Ghiass, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Herein, poly (acrylic acid) (PAA) microgels were synthesized via alcohol type cross-linked by a free radical precipitation polymerization approach. At the first time, 1,6-hexanediol (1–6 diol), trimethylolpropane (TMP), and pentaerythritol (PEN) were selected as multifunctional cross- linking agent to synthesize cross-linked poly(acrylic acid) microgels. Alcohol type cross-linking agents can connect the PAA chains. The cross-linking reaction takes place due to reaction between hydroxyl groups of various cross-linkers and carboxyl groups of PAA chains. All of the hydroxyl groups do not participate in the reaction with acid groups of polymer chains through the polymerization stage; therefore,... 

    Preparation of poly (acrylic acid) microgels by alcohol type cross-linkers and a comparison with other cross-linking methods

    , Article Polymer Bulletin ; Volume 79, Issue 9 , 2022 , Pages 7775-7794 ; 01700839 (ISSN) Kohestanian, M ; Bouhendi, H ; Keshavarzi, N ; Mahmoudi, M ; Pourjavadi, A ; Ghiass, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Herein, poly (acrylic acid) (PAA) microgels were synthesized via alcohol type cross-linked by a free radical precipitation polymerization approach. At the first time, 1,6-hexanediol (1–6 diol), trimethylolpropane (TMP), and pentaerythritol (PEN) were selected as multifunctional cross- linking agent to synthesize cross-linked poly(acrylic acid) microgels. Alcohol type cross-linking agents can connect the PAA chains. The cross-linking reaction takes place due to reaction between hydroxyl groups of various cross-linkers and carboxyl groups of PAA chains. All of the hydroxyl groups do not participate in the reaction with acid groups of polymer chains through the polymerization stage; therefore,... 

    A neumerical method to investigate the effect of ultrasonic waves on capillary imbibition

    , Article 72nd European Association of Geoscientists and Engineers Conference and Exhibition 2010: A New Spring for Geoscience. Incorporating SPE EUROPEC 2010 ; Volume 5 , 2010 , Pages 3246-3250 ; 9781617386671 (ISBN) Keshavarzi, B ; Karimi, R ; Najafi, I ; Ghotbi, C ; Ghaedian, M ; Sharif University of Technology
    Society of Petroleum Engineers  2010
    Abstract
    A lot of laboratory experiments have been carried out to investigate each aspect of ultrasonic wave s role on fluid flow behavior through porous media. Despite all experimental works, little attention has been paid for modeling the ultrasonic wave influence on capillary imbibition, which is the main mechanism of production in fractured reservoirs. At this work the process of imbibition with and without applying ultrasonic waves is mathematically modeled by modification of piston-like model. In contrast to this model s assumption, in which mobility ratio is assumed to be constant, here permeability variation due to increase in water saturation is considered in numerical solution. To evaluate... 

    Investigation of low frequency elastic wave application for fluid flow percolation enhancement in fractured porous media

    , Article Petroleum Science and Technology ; Volume 31, Issue 11 , 2013 , Pages 1159-1167 ; 10916466 (ISSN) Keshavarzi, B ; Karimi, R ; Najafi, I ; Ghazanfari, M. H ; Amani, M ; Ghotbi, C ; Sharif University of Technology
    2013
    Abstract
    In recent years, some numerical models have been proposed to investigate the effects of the elastic wave such as ultrasonic on fluid flow behavior in porous media. Nevertheless, none of these models are applicable to the fractured reservoirs, especially when the fluid is a Bingham plastic. In this work, the model proposed by P. P. Iassonov and I. A. Beresnev (2003) for flow under exposure of elastic wave in nonfractured porous media is considered and used for development of a new model of steady state flow of a Bingham plastic fluid in fractured reservoirs. The Kazemi's "block and fracture" model assuming negligible vertical permeability in blocks is considered for modeling. In addition,... 

    Investigating the role of ultrasonic wave on two-phase relative permeability in a free gravity drainage process

    , Article Scientia Iranica ; Vol. 21, issue. 3 , 2014 , p. 763-771 Keshavarzi, B ; Karimi, R ; Najafi, I ; Ghazanfari, M. H ; Ghotbi, C ; Sharif University of Technology
    2014
    Abstract
    In this work, the process of free gravity drainage under the influence of ultrasonic waves was investigated. A glass bead pack porous medium was used to perform free fall gravity drainage experiments. The tests were performed in the presence and absence of ultrasonic waves, and the data of recovery were recorded versus time under both conditions. The wetting phase relative permeability curves were obtained using the data of recovery versus time, based on the Hagoort backward methodology. Subsequently, using the wetting phase relative permeability curve, the relative permeability of non-wetting phases were calculated by performing history matching to the experimental production data. The... 

    Hole transport material based on modified N-annulated perylene for efficient and stable perovskite solar cells

    , Article Solar Energy ; Volume 194 , 2019 , Pages 279-285 ; 0038092X (ISSN) Sheibani, E ; Amini, M ; Heydari, M ; Ahangar, H ; Keshavarzi, R ; Zhang, J ; Mirkhani, V ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    N-annulated perylene based materials show outstanding and tunable optical and physical properties, making them suitable to be charge transport materials for optoelectronic applications. However, this type of materials has so far not been well studied in solar cells. Here, we develop a new hole transport material (HTM), namely S5, based on perylene building block terms, for organic-inorganic hybrid perovskite solar cells (PSCs). We have systematically studied the influences of the film thickness of S5 on their photovoltaic performance, and a low concentration of S5 with a thinner HTM film is favorable for obtaining higher solar cell efficiency. S5 shows excellent energy alignment with... 

    Simultaneous calculation of pore size distribution, capillary pressure, and relative permeability from injection-fall off-production test data

    , Article Special Topics and Reviews in Porous Media ; Vol. 5, issue. 1 , 2014 , p. 41-51 Keshavarzi, B ; Jamshidi, S ; Salehi, S ; Sharif University of Technology
    2014
    Abstract
    This work concerns simultaneous determination of relative permeability, capillary pressure, pore size distribution (PSD), and residual oil saturation data by optimization of well testing data, and introduces a new capillary pressure relationship, based on the Weibull distribution function, for direct determination of the PSD function from capillary pressure parameters. Three consecutive injection, fall off, and production well tests are performed on a predefined synthetic reservoir through simulation, and an optimization algorithm is used to find the parameters of relative permeability and capillary pressure curves as well as the value of residual oil saturation. The PSD function is also... 

    The application of MODIS satellite remote sensing in estimation of particulate urban air pollution

    , Article 100th Annual Conference and Exhibition of the Air and Waste Management Association 2007, ACE 2007, 26 June 2007 through 29 June 2007 ; Volume 2 , 2007 , Pages 736-742 ; 9781604238464 (ISBN) Torkian, A ; Amid, F ; Keshavarzi, H ; Sharif University of Technology
    Air and Waste Management Association  2007
    Abstract
    Particulate matter (PM) pollution is a growing concern in urban areas in the developing countries because of its potential to aggravate cardiovascular and respiratory illnesses. Traditional approaches in monitoring urban pollutants have relied on ground-based networks even though they essentially provide point measurements and are inadequate for health alerts on large spatial and long temporal scales. Recent advances in satellite imagery has attracted managers to look into this new alternative as a predictive tool for improving air quality at urban and regional scales by providing necessary data in advance of the onset of actual severe conditions. Moderate Resolution Imaging... 

    Facile and tunable method for polymeric surface modification of magnetic nanoparticles via RAFT polymerization: Preparation, characterization, and drug release properties

    , Article European Polymer Journal ; Volume 167 , 2022 ; 00143057 (ISSN) Kohestanian, M ; Pourjavadi, A ; Keshavarzi, N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Herein, the facile and tunable technique for the preparation of novel multi-stimuli-responsive nanocomposites via RAFT polymerization for DOX delivery is reported. The influence of the molecular weight of pH- and thermo-sensitive poly (acrylic acid-co-NIPAM) (PNAx), as a macro-RAFT agent, on the nanocomposites size and drug release rate was investigated. The outcome of this study reveals that macro-RAFT agent with lower molecular weight can be attached to the surface of magnetic nanoparticles with higher content of polymeric layer than can macro-RAFT agent with higher molecular weight. Also, it was observed that the particle size, polymer grafting density, DOX loading capacity, and DOX... 

    Design of a Colorimetric Sensor Array Based on Triangular Silver Nanoparticles for the Detection and Discrimination of Halide Ions

    , M.Sc. Thesis Sharif University of Technology Keshavarzi, Parham (Author) ; Hormozinezhad, Mohammad Reza (Supervisor)
    Abstract
    The exitance of a certain amount of halide ions including Chloride (Cl-), Bromide (Br-) and Iodide (I-) in human body is crucial for ensuring health. However, exposure to high levels of these ions can cause diseases, such as goiter and neurological disfunction. As a result, the development of a simple and efficient analytical method for determining the aforesaid halide ions is so important. Triangular silver nanoparticles (TSNPs) display wide color variations due to their tunable plasmonic properties dependent on the aspect ratio of the nanoparticles. Hence, designing a colorimetric sensor array using the optical properties of TSNPs for determination and discrimination of halide ions is of...