Loading...
Search for:
khafaji--mona
0.086 seconds
Simultaneous Voltammetric Determination of Epinephrine and UricAcid in Presence of Ascorbic Acid Using Pyrolytic Graphite Electrode Modified with Nano- diamond/graphite Film & Voltammetric Determination of Levothyroxine at the Surface of Edge Plane Pyrolytic Graphite Electrode
,
M.Sc. Thesis
Sharif University of Technology
;
Shahrokhian, Saeed
(Supervisor)
Abstract
Part 1: A novel modified pyrolytic graphite electrode with nanodiamond/graphite was fabricated. The electrochemical response characteristics of the modified electrode toward the epinephrine (EN) and uric acid (UA) are studied by means of cyclic and linear sweep voltammetry. The structural morphology and thickness of the film was characterized by SEM technique.The prepared electrode shows an excellent catalytic activity in the electrochemical oxidation of EN and UA, leading to remarkable enhancements in the corresponding peak currents and lowering the peak potentials. The prepared modified electrode acts as a highly sensitive sensor for simultaneous determination of EN and UA in the presence...
Electrochemistry of levo-thyroxin on edge-plane pyrolytic graphite electrode: application to sensitive analytical determinations
, Article Electroanalysis ; Volume 23, Issue 8 , JUL , 2011 , Pages 1875-1880 ; 10400397 (ISSN) ; Shahrokhian, S ; Ghalkhani, M ; Sharif University of Technology
2011
Abstract
The electrochemical response of sodium levo-thyroxin (T4) at the surface of an edge plane pyrolytic graphite (EPPG) electrode is investigated using cyclic voltammetric technique in the presence of 0.1M HCl as supporting electrolyte. T4 underwent totally irreversible oxidation at this system and a well-defined peak at 821mV was obtained. Compared to the signals obtained in the optimized conditions at bare glassy carbon and carbon paste electrodes, the oxidation current of T4 at an EPPG electrode was greatly enhanced. The electrochemical process of T4 was explored and the experimental conditions were optimized. The oxidation peak current represented a linear dependence on T4 concentration from...
Gold-based hybrid nanostructures: more than just a pretty face for combinational cancer therapy
, Article Biophysical Reviews ; Volume 14, Issue 1 , 2022 , Pages 317-326 ; 18672450 (ISSN) ; Bavi, O ; Zamani, M ; Sharif University of Technology
Springer Science and Business Media Deutschland GmbH
2022
Abstract
The early diagnosis together with an efficient therapy of cancer is essential to treat cancer patients and to enhance their quality of life. The use of nanostructures, as a newer technology, has demonstrated proven benefits as efficient cancer theranostic agents in numerous recent studies. Having a tunable surface plasmon resonance, gold nanostructures have been the subject of many recent studies as excellent imaging and photothermal therapy agents. However, the potential cytotoxicity and weak stability of gold nanostructures necessitate further modifications using biocompatible materials for biological applications. Based on the composition of the final structure, these gold-based hybrid...
Inorganic nanomaterials for chemo/photothermal therapy: a promising horizon on effective cancer treatment
, Article Biophysical Reviews ; Volume 11, Issue 3 , 2019 , Pages 335-352 ; 18672450 (ISSN) ; Zamani, M ; Golizadeh, M ; Bavi, O ; Sharif University of Technology
Springer Verlag
2019
Abstract
During the last few decades, nanotechnology has established many essential applications in the biomedical field and in particular for cancer therapy. Not only can nanodelivery systems address the shortcomings of conventional chemotherapy such as limited stability, non-specific biodistribution and targeting, poor water solubility, low therapeutic indices, and severe toxic side effects, but some of them can also provide simultaneous combination of therapies and diagnostics. Among the various therapies, the combination of chemo- and photothermal therapy (CT-PTT) has demonstrated synergistic therapeutic efficacies with minimal side effects in several preclinical studies. In this regard,...
Doxorubicin/cisplatin-loaded superparamagnetic nanoparticles as a stimuli-responsive Co-delivery system for chemo-photothermal therapy
, Article International Journal of Nanomedicine ; Volume 14 , 2019 , Pages 8769-8786 ; 11769114 (ISSN) ; Zamani, M ; Vossoughi, M ; Iraji zad, A ; Sharif University of Technology
Dove Medical Press Ltd
2019
Abstract
Introduction: To date, numerous iron-based nanostructures have been designed for cancer therapy applications. Although some of them were promising for clinical applications, few efforts have been made to maximize the therapeutic index of these carriers. Herein, PEGylated silica-coated iron oxide nanoparticles (PS-IONs) were introduced as multipurpose stimuli-responsive co-delivery nanocarriers for a combination of dual-drug chemotherapy and photothermal therapy. Methods: Superparamagnetic iron oxide nanoparticles were synthesized via the sonochemical method and coated by a thin layer of silica. The nanostructures were then further modified with a layer of di-carboxylate polyethylene glycol...
Doxorubicin/cisplatin-loaded superparamagnetic nanoparticles as a stimuli-responsive Co-delivery system for chemo-photothermal therapy
, Article International Journal of Nanomedicine ; Volume 14 , 2019 , Pages 8769-8786 ; 11769114 (ISSN) ; Zamani, M ; Vossoughi, M ; Iraji zad, A ; Sharif University of Technology
Dove Medical Press Ltd
2019
Abstract
Introduction: To date, numerous iron-based nanostructures have been designed for cancer therapy applications. Although some of them were promising for clinical applications, few efforts have been made to maximize the therapeutic index of these carriers. Herein, PEGylated silica-coated iron oxide nanoparticles (PS-IONs) were introduced as multipurpose stimuli-responsive co-delivery nanocarriers for a combination of dual-drug chemotherapy and photothermal therapy. Methods: Superparamagnetic iron oxide nanoparticles were synthesized via the sonochemical method and coated by a thin layer of silica. The nanostructures were then further modified with a layer of di-carboxylate polyethylene glycol...
Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior
, Article Materials Science and Engineering C ; Volume 103 , 2019 ; 09284931 (ISSN) ; Alemzadeh, I ; Tamjid, E ; Khafaji, M ; Vossoughi, M ; Sharif University of Technology
Elsevier Ltd
2019
Abstract
In order to regenerate bone defects, bioactive hierarchically scaffolds play a key role due to their multilevel porous structure, high surface area, enhanced nutrient transport and diffusion. In this study, novel hierarchically porous silk fibroin (SF) and silk fibroin-bioactive glass (SF-BG) composite were fabricated with controlled architecture and interconnected structure, by combining indirect three-dimensional (3D) inkjet printing and freeze-drying methods. Further, the effect of 45S5 Bioactive glass particles of different sizes (<100 nm and 6 μm) on mechanical strength and cell behavior was investigated. The results demonstrated that the hierarchical structure in this scaffold was...
Removal of bisphenol A in aqueous solution using magnetic cross-linked laccase aggregates from Trametes hirsuta
, Article Bioresource Technology ; Volume 306 , 2020 ; Ghobadi Nejad, Z ; Ghasemi, S ; Khafaji, M ; Borghei, S. M ; Sharif University of Technology
Elsevier Ltd
2020
Abstract
Enzymatic removal of Bisphenol A (BPA), acknowledged as an environmentally friendly approach, is a promising method to deal with hard degradable contaminants. However, the application of “enzymatic treatment” has been limited due to lower operational stability and practical difficulties associated with recovery and recycling. Enzyme immobilization is an innovative approach which circumvents these drawbacks. In this study, laccase from Trametes hirsuta was used for BPA removal. Amino-functionalized magnetic Fe3O4 nanoparticles were synthesized via the co-precipitation method followed by surface modification with (3-aminopropyl)trimethoxysilane (APTMS). The as-prepared nanoparticles were...
A new bifunctional hybrid nanostructure as an active platform for photothermal therapy and MR imaging
, Article Scientific Reports ; Volume 6 , 2016 ; 20452322 (ISSN) ; Vossoughi, M ; Hormozi Nezhad, M. R ; Dinarvand, R ; Börrnert, F ; Irajizad, A ; Sharif University of Technology
Nature Publishing Group
2016
Abstract
As a bi-functional cancer treatment agent, a new hybrid nanostructure is presented which can be used for photothermal therapy by exposure to one order of magnitude lower laser powers compared to similar nanostructures in addition to substantial enhancment in magnetic resonance imaging (MRI) contrast. This gold-iron oxide hybrid nanostructure (GIHN) is synthesized by a cost-effective and high yield water-based approach. The GIHN is sheilded by PEG. Therefore, it shows high hemo and biocompatibility and more than six month stability. Alongside earlier nanostructures, the heat generation rate of GIHN is compareable with surfactnat-capped gold nanorods (GNRs). Two reasons are behind this...
Evaluation of cellular attachment and proliferation on different surface charged functional cellulose electrospun nanofibers
, Article Carbohydrate Polymers ; Volume 207 , 2019 , Pages 796-805 ; 01448617 (ISSN) ; Karimi, A ; Gandomi Ravandi, S ; Vossoughi, M ; Khafaji, M ; Joghataei, M. T ; Faghihi, F ; Sharif University of Technology
Elsevier Ltd
2019
Abstract
Fabrication and characterization of different surface charged cellulose electrospun scaffolds including cellulose acetate (CA), cellulose, carboxymethyl cellulose (CMC) and quaternary ammonium cationic cellulose (QACC) for biomedical applications have been reported in this research. Several instrumental techniques were employed to characterize the nanofibers. MTT assay and cell attachment studies were also carried out to determine the cytocompatibility, viability and proliferation of the scaffolds. Fabricated CA, cellulose, CMC and QACC nanofibers had 100–600 nm diameter, −9, −1.75, −12.8, + 22 mV surface potential, 2.5, 4.2, 7.2, 7 MPa tensile strength, 122, 320, 515, 482 MPa Young modules,...
A new approach for simultaneously improved osseointegration and antibacterial activity by electrochemical deposition of graphene nanolayers over titania nanotubes
, Article Applied Surface Science ; Volume 580 , 2022 ; 01694332 (ISSN) ; Bagheri, R ; Vossoughi, M ; khafaji, M ; Asadian, E ; Ahmadi Seyedkhani, S ; Samadikuchaksaraei, A ; Sharif University of Technology
Elsevier B.V
2022
Abstract
Simultaneous enhancement of osseointegration and bacterial infection prohibition through surface modifications is a challenging but promising approach to achieve durable implantation. To that end, we present a multifunctional surface coating composed of graphene nanolayers and hierarchical well-aligned TiO2 nanotubes with a nanoporous top layer (cRTNT). FESEM studies reveal tunable increasing island morphologies of graphene nanolayers (G) on cRTNT by a cyclic voltammetry process. XPS analysis shows that the enhanced interface chemistry is due to TiO2-carbon bonding. The roughness of the sample containing a medium amount of graphene, cRTNT-75%GO, was calculated ∼289 nm, which was 543% higher...
An Experimental Study of Cancer Treatment Using Combined Hyperthermia and Chemotherapy Methods
, Ph.D. Dissertation Sharif University of Technology ; Vosoghi, Manoucher (Supervisor) ; Hormozinezhad, Mohammad Reza (Supervisor) ; Dinarvand, Rasoul (Supervisor) ; Iraji Zad, Azam (Co-Advisor)
Abstract
Cancer treatment is one of the most challenging issues of recent years. Extensive researches have been conducted in various fields of medicine, pharmacy, and medical physics in this regard. Today, considering nanotechnology developments, researchers believe that full cancer treatment is possible through the use of nano-systems designed with scientific background to overcome the defects of previous methods. In this research, the main purpose is to design and synthesize multifunctional hybrid nanostructures with favorable optical and magnetic properties providing a way to combine chemotherapy and thermal treatment. Accordingly, two different structures were designed and experimentally...