Loading...
Search for: khajeh--a
0.145 seconds

    Ideal orientations of BCC crystals under equibiaxial tension loading

    , Article Mathematics and Mechanics of Solids ; Volume 21, Issue 8 , 2016 , Pages 1026-1042 ; 10812865 (ISSN) Khajeh Salehani, M ; Hajian, M ; Assempour, A ; Sharif University of Technology
    SAGE Publications Inc  2016
    Abstract
    Ideal orientations are one of the material characteristics of the applied mode of deformation. The transfer of material texture to orientations near specific ideal orientations can improve the mechanical properties of the material. In this paper, we focus on the determination of ideal orientations of BCC crystals under the equibiaxial tension mode of deformation. To do this, an Euler space scanning method based on a crystal plasticity approach is presented. In this method some initial orientations which are evenly spaced in the Euler space are selected and their evolutions into the ideal orientations are tracked. The loading is applied incrementally until all of the lattice spin components... 

    High-order accurate numerical solution of incompressible slip flow and heat transfer in microchannels

    , Article Lecture Notes in Computational Science and Engineering, 22 June 2009 through 26 June 2009 ; Volume 76 LNCSE , June , 2011 , Pages 419-427 ; 14397358 (ISSN); 9783642153365 (ISBN) Hejranfar, K ; Mohafez, M. H ; Khajeh Saeed, A ; Sharif University of Technology
    2011
    Abstract
    A high-order accurate implicit operator scheme is used to solve steady incompressible slip flow and heat transfer in 2D microchannels. The present methodology considers the solution of the Navier-Stokes equations using the artificial compressibility method with employing the Maxwell and Smoluchowski boundary conditions to model the slip flow and temperature jump on the walls in microchannels. Since the slip and temperature jump boundary conditions contain the derivatives of the velocity and temperature profiles, using the compact method the boundary conditions can be easily and accurately implemented. The computations are performed for a 2D microchannel and a 2D backward facing step in the... 

    Geometrical scaling effects on supersonic inlet performance

    , Article ASME 2017 International Mechanical Engineering Congress and Exposition, IMECE 2017, 3 November 2017 through 9 November 2017 ; Volume 1 , 2017 ; 9780791858349 (ISBN) Askari, R ; Soltani, M. R ; Khajeh Fard, A ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2017
    Abstract
    The effects of geometrical scaling on a supersonic external compression axisymmetric inlet are investigated. Various lower and higher geometrical scales of supersonic inlet are considered as the case studies. The inlet flow is simulated numerically using RANS solver along with the SST k-w turbulence model. The numerical results are in an acceptable agreement with the NACA experimental data at free stream Mach number of 1.79 and at zero angle of attack. The results show that the static pressure distribution of the inlet flow experiences some differences for various scales especially at the regions of the flow entrance and throat area. The mean flow Mach number and the mass flow rate at the... 

    Adsorption of TiO2 nanoparticles on glass fibers

    , Article Journal of Physical Chemistry C ; Volume 111, Issue 27 , 2007 , Pages 9794-9798 ; 19327447 (ISSN) Khajeh Aminian, M ; Taghavinia, N ; Irajizad, A ; Mahdavi, M ; Sharif University of Technology
    2007
    Abstract
    Titania was deposited on glass fibers with a partial epoxy layer coating from a solution containing TiO2 nanoparticles at T = 90°C, and the adsorption process was examined by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), Fourier transform infrared (FT-IR) spectroscopy, and photocatalytic activity measurements. XPS data demonstrated that about 25% of the surface was covered with TiO2 nanoparticles, with 10% on the epoxy layer and 15% on the glass body. It was found that TiO2 nanoparticles can be readily adsorbed on epoxy groups, whereas they have a low tendency to adsorb on carbon polymer chains. This difference can be... 

    Adaptive pushover analysis

    , Article 10th East Asia-Pacific Conference on Structural Engineering and Construction, EASEC 2010, Bangkok, 3 August 2006 through 5 August 2006 ; Volume 3 , 2006 , Pages 453-458 ; 9748257231 (ISBN); 9789748257235 (ISBN) Rahimzadeh Rofooei, F ; Rasekh, A ; Shodja, A. H ; Khajeh Ahmad Attari, N ; Sharif University of Technology
    2006
    Abstract
    Nonlinear static methods are simplified procedures in which the problem of evaluating the maximum expected response of a MDOF system for a specified level of earthquake motion is replaced by response evaluation of its equivalent SDOF system. The common features of these procedures are the use of pushover analysis to characterize the structural system. In pushover analysis both the force distribution and the target displacement are based on the assumptions that the response is controlled by the fundamental mode and that the mode shape remains unchanged after the structure yields. Therefore the invariant force distributions does not account for the change of load patterns caused by the plastic... 

    Observer-based adaptive fuzzy controller for uncertain non-strict state-delayed nonlinear systems subject to input and output constraints

    , Article Journal of the Franklin Institute ; Volume 357, Issue 12 , 2020 , Pages 7483-7514 Askari, M. R ; Shahrokhi, M ; Khajeh Talkhoncheh, M ; Moradvandi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This paper addresses the design of an observer-based adaptive fuzzy controller for a class of uncertain non-strict nonlinear systems subject to time-delays, unknown direction, input saturation, and output constraint. The Barrier Lyapunov Function (BLF) has been utilized to keep the system output inside the desired bounds. The state and input delays have been handled by using the Lyapunov–Krasovskii function and including an integral compensator term in the controller, respectively. A state observer has been designed to estimate the unmeasured states. The Lipschitz condition for proving boundedness of the estimated states has been relaxed. The Nussbaum gain function has been exploited to deal... 

    A fast optimal flux search controller with improved steady state behavior for DTC based induction motor drives

    , Article 2005 IEEE International Conference on Electric Machines and Drives, San Antonio, TX, 15 May 2005 through 15 May 2005 ; 2005 , Pages 1732-1736 ; 0780389875 (ISBN); 9780780389878 (ISBN) Kaboli, S ; Vahdati Khajeh, E ; Zolghadri, M. R ; Homaifar, A ; Sharif University of Technology
    IEEE Computer Society  2005
    Abstract
    Flux search controllers are proposed to improve the efficiency of electrical motors especially induction motors. In this paper, a flux search controller is proposed to increase the efficiency of a direct torque controlled induction motor with light load. The reference flux value is determined through a two stage minimization algorithm with the amplitude of the stator current as the objective function. In the transient state, a great flux step is used to speed up the convergence. In the steady state, a noise cancellation algorithm is used to let using small flux step and improves the steady state behavior of flux controller. Simulation and experimental confirm the fast dynamics of the... 

    On the performance of optimal flux search controller for DTC based induction motor drives

    , Article 2005 IEEE International Conference on Electric Machines and Drives, San Antonio, TX, 15 May 2005 through 15 May 2005 ; 2005 , Pages 1752-1756 ; 0780389875 (ISBN); 9780780389878 (ISBN) Kaboli, S ; Vahdati Khajeh, E ; Zolghadri, M. R ; Homaifar, A ; Sharif University of Technology
    IEEE Computer Society  2005
    Abstract
    Application of a flux search controller in direct torque control of induction motor drives produces divergence problem and steady state flux ripple, because of the disturbance in the control loop. In this paper, an investigation about the origin of this noise has been performed. It is shown that the variation of voltage harmonics is the main reason of disturbance in the flux control loop. The minimum allowable value of flux step has been determined based on this analysis to prevent the divergence problem. Feasibility of noise cancellation has been discussed. Experimental results are presented to justify the theoretical analysis. © 2005 IEEE  

    Adjoint-based design optimization of s-shaped intake geometry

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 3 November 2017 through 9 November 2017 ; Volume 1 , 2017 ; 9780791858349 (ISBN) Askari, R ; Shoureshi, P ; Soltani, M. R ; Khajeh Fard, A ; ASME ; Sharif University of Technology
    2017
    Abstract
    The S-shaped air intakes are very common shapes due to their ease in the engine-body integration or Radar Cross Section, RCS, specifications especially for fighter aircrafts. The numerical shape optimization of an S-shaped air intake using adjoint method is conducted. The flow of a specified air intake that uses S-duct M2129 is simulated using three dimensional (3D) numerical solution of Reynolds-Averaged Navier-Stokes equation along with k-ω SST turbulence model. The main purpose of this optimization scheme is to maximize the total pressure recovery (TPR). Further, the scheme is developed in such a way that would be applicable in industry thru satisfying specified constraint requirements.... 

    Blood plasma separation and transfer on a centrifugal microfluidic disk: Numerical analysis and experimental study

    , Article 2023 30th National and 8th International Iranian Conference on Biomedical Engineering, ICBME 2023 ; 2023 , Pages 20-26 ; 979-835035973-2 (ISBN) Khajeh, M. M ; Saadatmand, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2023
    Abstract
    Lab-On-A-Disk, as a subfield of microfluidic systems, recently has drawn attention to being utilized in blood biomarker diagnosis, blood typing, and immunoassays because of being high-Throughput, highly precise, and easy to use. Blood plasma separation is a most vital unit for pre-processing in these systems, since the blood plasma contains a lot of proteins and enzymes that should be separated, and precisely examined. Therefore, in this paper, for the first time, a numerical model was proposed to evaluate the plasma separation in various time scales and geometries, and an appropriate design was proposed. Furthermore, because the blood plasma volume is different between patients, and the... 

    Evaluation of Effective Parameters in Trapping Aerosols and Examination of Possibility of Detecting Distortions of Microdroplets by Means of Optical Tweezer

    , M.Sc. Thesis Sharif University of Technology Khajeh, Ahmad (Author) ; Seyed Reihani, Nader (Supervisor)
    Abstract
    Optical tweezer is a highly focused laser beam that could be used to trap micro and nano particles in three dimensions. It could be used to measure(or apply) piconewton range forces. Most of the optical tweezers experiments have been done in liquid mediums. In last few years, trapping particles which are floating in gas mediums(called aerosols) have been considered extensively. In this thesis, the changes in trap stiffness and conversion factor due to changes in laser power, trapping depth and particle are evaluated. It is shown that changing these three parameters, cause considerable changes in trap stiffnes and conversion factor. Linear behavior of trap stiffness versus laser power,... 

    Estimating phase behavior of the asphaltene precipitation by GA-ANFIS approach

    , Article Petroleum Science and Technology ; Volume 36, Issue 19 , 2018 , Pages 1582-1588 ; 10916466 (ISSN) Chen, M ; Sasanipour, J ; Kiaian Mousavy, S. A ; Khajeh, E ; Kamyab, M ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    This study implements an adaptive neuro-fuzzy inference system (ANFIS) approach to predict the precipitation amount of the asphaltene using temperature (T), dilution ratio (Rv), and molecular weight of different n-alkanes. Results are then evaluated using graphical and statistical error analysis methods, confirming the model’s great ability for appropriate prediction of the precipitation amount. Mean squared error and determination coefficient (R2) values of 0.036 and 0.995, respectively are obtained for the proposed ANFIS model. Results are then compared to those from previously reported correlations revealing the better performance of the proposed model. © 2018, © 2018 Taylor & Francis... 

    Effect of EPS beads in lightening a typical zeolite and cement-treated sand

    , Article Bulletin of Engineering Geology and the Environment ; Volume 80, Issue 11 , 2021 , Pages 8615-8632 ; 14359529 (ISSN) Khajeh, A ; Ebrahimi, S. A ; MolaAbasi, H ; Jamshidi Chenari, R ; Payan, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    The current study aims to assess the influence of EPS beads inclusion on the strength properties of stabilized poorly-graded sands. Various contents of zeolite and cement as stabilizing agents, with the total amounts of 4, 8, and 12% by dry soil weight, and also 0, 0.25, and 0.5% weight ratios of EPS beads (η) are examined. Zeolite is opted among a variety of pozzolanic materials so as to replace a part of cement (0, 10, 30, 50, 70, and 90%) due to its superior environmentally friendly properties. The stress–strain behavior, unconfined compressive strength (UCS), peak strain energy (Eu), and California bearing capacity (CBR) of the zeolite and cement-treated sand-EPS beads mixtures are... 

    Static and dynamic pushover analysis of steel moment resisting frames

    , Article 10th East Asia-Pacific Conference on Structural Engineering and Construction, EASEC 2010, Bangkok, 3 August 2006 through 5 August 2006 ; Volume 3 , 2006 , Pages 459-464 ; 9748257231 (ISBN); 9789748257235 (ISBN) Rasekh, A ; Rahimzadeh Rofooei, F ; Khajeh Ahmad Attari, N ; Shodja, A. H ; Sharif University of Technology
    2006
    Abstract
    Pushover analysis is a simplified nonlinear analysis technique that can be used to estimate the dynamic demands imposed on a structure under earthquake excitations. One of the first steps taken in this approximate solution is to assess the maximum roof displacement, known as target displacement, using the base shear versus roof displacement diagram. That could be done by the socalled dynamic pushover analysis, i.e. a dynamic time history analysis of an equivalent single degree of freedom model of the original system, as well as other available approximate static methods. In this paper, a number of load patterns, including a new approach, are considered to construct the related pushover... 

    A Review on Structure Formation Via f(R) Gravity Models

    , M.Sc. Thesis Sharif University of Technology Khajeh Tabrizi, Zahra (Author) ; Rahvar, Sohrab (Supervisor)
    Abstract
    It has been about a decade that cosmological datas have shown the universe is accelerating. To describe this acceleration, cosmologosts use cosmological constant as the easiest way to describe,or the modified gravity models or smooth dark energy models as other ways. In this thesis we solved a specific structure formation problem, density contrast, for linear structures, in two different methods. the first method was LCDM model and the second method was a specific f (R) gravity model. We shpwed that these two solutions are about the same.
     

    On lateral response of structures containing a cylindrical liquid tank under the effect of fluid/structure resonances

    , Article Journal of Sound and Vibration ; Volume 318, Issue 4-5 , 2008 , Pages 1154-1179 ; 0022460X (ISSN) Khajeh Ahmad Attari, N ; Rahimzadeh Rofooei, F ; Sharif University of Technology
    Academic Press  2008
    Abstract
    The lateral response of a single degree of freedom (SDOF) structural system containing a rigid circular cylindrical liquid tank, under harmonic and earthquake excitations is considered. The governing differential equations of motion for the combined system is derived considering the first 3 liquid sloshing modes (1,1), (0,1), and (2,1), under horizontal excitation. The system is considered nonlinear due to the convective term of liquid acceleration and the nonlinear surface boundary conditions, both caused by the inertial nonlinearity. The harmonic and seismic response of the system is investigated in the neighborhood of 1:1 and 1:2 internal resonances between the SDOF system and the first... 

    Observer-based adaptive fuzzy controller for nonlinear systems with unknown control directions and input saturation

    , Article Fuzzy Sets and Systems ; May , 2016 ; 01650114 (ISSN) Askari, M. R ; Shahrokhi, M ; Khajeh Talkhoncheh, M ; Sharif University of Technology
    Elsevier  2016
    Abstract
    This paper addresses design of an observer-based adaptive fuzzy controller for a class of single-input-single-output (SISO) nonlinear systems with unknown dynamics subject to input nonlinearity and unknown direction. The proposed controller is singularity free. A high-gain observer is designed to estimate the unmeasured states, and the Lipschitz condition for proving boundedness of the estimated states is relaxed. The Nussbaum function is used to handle the unknown virtual control directions and the backstepping technique has been applied for controller design. It is proved that all closed loop signals are semi-globally uniformly ultimately bounded (SGUUB) and the output tracking error... 

    Observer-based adaptive neural network controller for uncertain nonlinear systems with unknown control directions subject to input time delay and saturation

    , Article Information Sciences ; Volume 418-419 , 2017 , Pages 717-737 ; 00200255 (ISSN) Khajeh Talkhoncheh, M ; Shahrokhi, M ; Askari, M. R ; Sharif University of Technology
    2017
    Abstract
    This paper addresses the design of an observer based adaptive neural controller for a class of strict-feedback nonlinear uncertain systems subject to input delay, saturation and unknown direction. The input delay has been handled using an integral compensator term in the controller design. A neural network observer has been developed to estimate the unmeasured states. In the observer design, the Lipschitz condition has been relaxed. To solve the problem of unknown control directions, the Nussbaum gain function has been applied in the backstepping controller design. “The explosion of complexity” occurred in the traditional backstepping technique has been avoided utilizing the dynamic surface... 

    Observer-based adaptive fuzzy controller for nonlinear systems with unknown control directions and input saturation

    , Article Fuzzy Sets and Systems ; Volume 314 , 2017 , Pages 24-45 ; 01650114 (ISSN) Askari, M. R ; Shahrokhi, M ; Khajeh Talkhoncheh, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    This paper addresses design of an observer-based adaptive fuzzy controller for a class of single-input–single-output (SISO) nonlinear systems with unknown dynamics subject to input nonlinearity and unknown direction. The proposed controller is singularity free. A high-gain observer is designed to estimate the unmeasured states, and the Lipschitz condition for proving boundedness of the estimated states is relaxed. The Nussbaum function is used to handle the unknown virtual control directions and the backstepping technique has been applied for controller design. It is proved that all closed loop signals are semi-globally uniformly ultimately bounded (SGUUB) and the output tracking error... 

    Magnetite nanoparticle as a support for stabilization of chondroitinase ABCI

    , Article Artificial Cells, Nanomedicine and Biotechnology ; Volume 47, Issue 1 , 2019 , Pages 2721-2728 ; 21691401 (ISSN) Askaripour, H ; Vossoughi, M ; Khajeh, K ; Alemzadeh, I ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Chondroitinase ABCI (cABCI) is a drug enzyme that can be used to treat spinal cord injuries. Due to low thermal stability of cABCI, this enzyme was immobilized on Fe3O4 nanoparticle to increase its thermal stability. The size and morphology, structure and magnetic property of the Fe3O4 nanoparticles were characterized by the analyses of SEM, XRD and VSM, respectively, and FTIR spectroscopy was employed to confirm the immobilization of cABCI on the surface of Fe3O4 nanoparticles. The results indicated that the optimum conditions for pH, temperature, cABCI-to-Fe3O4 mass ratio and incubation time in immobilization process were 6.5, 15 °C, 0.75 and 4.5 h, respectively, and about 0.037 mg cABCI...