Loading...
Search for: khalaf--k
0.105 seconds

    Effects of human stature and muscle strength on the standing strategies: A computational biomechanical study

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 234, Issue 7 , 2020 , Pages 674-685 Ashtiani, M. N ; Azghani, M. R ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    It has been hypothesized that the muscular efforts exerted during standing may be altered by changes in personal factors, such as the body stature and muscular strength. The goal of this work was to assess the contribution of leg muscles using a biomechanical model in different physical conditions and various initial postures. An optimized inverse dynamics model was employed to find the maximum muscular effort in 23,040 postures. The simulation results showed that mid-range knee flexion could help the healthy and strong individuals maintain balance, but those with weaker muscle strength required more knee flexion. Individuals of weak muscular constitution as well as those with tall stature... 

    A model for flexi-bar to evaluate intervertebral disc and muscle forces in exercises

    , Article Medical Engineering and Physics ; Volume 38, Issue 10 , 2016 , Pages 1076-1082 ; 13504533 (ISSN) Abdollahi, M ; Nikkhoo, M ; Ashouri, S ; Asghari, M ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    This study developed and validated a lumped parameter model for the FLEXI-BAR, a popular training instrument that provides vibration stimulation. The model which can be used in conjunction with musculoskeletal-modeling software for quantitative biomechanical analyses, consists of 3 rigid segments, 2 torsional springs, and 2 torsional dashpots. Two different sets of experiments were conducted to determine the model's key parameters including the stiffness of the springs and the damping ratio of the dashpots. In the first set of experiments, the free vibration of the FLEXI-BAR with an initial displacement at its end was considered, while in the second set, forced oscillations of the bar were... 

    Biomechanical response of intact, degenerated and repaired intervertebral discs under impact loading – Ex-vivo and In-Silico investigation

    , Article Journal of Biomechanics ; Volume 70 , March , 2018 , Pages 26-32 ; 00219290 (ISSN) Nikkhoo, M ; Wang, J. L ; Parnianpour, M ; El-Rich, M ; Khalaf, K ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Understanding the effect of impact loading on the mechanical response of the intervertebral disc (IVD) is valuable for investigating injury mechanisms and devising effective therapeutic modalities. This study used 24 porcine thoracic motion segments to characterize the mechanical response of intact (N = 8), degenerated (Trypsin-denatured, N = 8), and repaired (Genepin-treated, N = 8) IVDs subject to impact loading. A meta-model analysis of poroelastic finite element simulations was used in combination with ex-vivo creep and impact tests to extract the material properties. Forward analyses using updated specimen-specific FE models were performed to evaluate the effect of impact duration. The... 

    Efficient embedding of empirically-derived constraints in the ODE formulation of multibody systems: Application to the human body musculoskeletal system

    , Article Mechanism and Machine Theory ; Volume 133 , 2019 , Pages 673-690 ; 0094114X (ISSN) Ehsani, H ; Poursina, M ; Rostami, M ; Mousavi, A ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    We present a novel method for deriving the governing equations of the musculoskeletal system, a new class of multibody systems in which the constituent components are connected together via anatomical joints which behave differently compared with traditional mechanical joints. In such systems, the kinematics of the joints and the corresponding constraints are characterized experimentally. We generate the equations of motion of these complex systems in which the homogeneous transformation matrices become matrix-valued functions of the generalized coordinate vector due to the empirical expression of body coordinates as smooth functions of generalized coordinates. The detailed mathematical... 

    A novel approach to spinal 3-D kinematic assessment using inertial sensors: towards effective quantitative evaluation of low back pain in clinical settings

    , Article Computers in Biology and Medicine ; Volume 89 , 2017 , Pages 144-149 ; 00104825 (ISSN) Ashouri, S ; Abedi, M ; Abdollahi, M ; Dehghan Manshadi, F ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    2017
    Abstract
    This paper presents a novel approach for evaluating LBP in various settings. The proposed system uses cost-effective inertial sensors, in conjunction with pattern recognition techniques, for identifying sensitive classifiers towards discriminate identification of LB patients. 24 healthy individuals and 28 low back pain patients performed trunk motion tasks in five different directions for validation. Four combinations of these motions were selected based on literature, and the corresponding kinematic data was collected. Upon filtering (4th order, low pass Butterworth filter) and normalizing the data, Principal Component Analysis was used for feature extraction, while Support Vector Machine... 

    A regenerative approach towards recovering the mechanical properties of degenerated intervertebral discs: Genipin and platelet-rich plasma therapies

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 231, Issue 2 , 2017 , Pages 127-137 ; 09544119 (ISSN) Nikkhoo, M ; Wang, J. L ; Abdollahi, M ; Hsu, Y. C ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    SAGE Publications Ltd  2017
    Abstract
    Degenerative disc disease, associated with discrete structural changes in the peripheral annulus and vertebral endplate, is one of the most common pathological triggers of acute and chronic low back pain, significantly depreciating an individual's quality of life and instigating huge socioeconomic costs. Novel emerging therapeutic techniques are hence of great interest to both research and clinical communities alike. Exogenous crosslinking, such as Genipin, and platelet-rich plasma therapies have been recently demonstrated encouraging results for the repair and regeneration of degenerated discs, but there remains a knowledge gap regarding the quantitative degree of effectiveness and... 

    A systematic review of fall risk factors in stroke survivors: towards improved assessment platforms and protocols

    , Article Frontiers in Bioengineering and Biotechnology ; Volume 10 , 2022 ; 22964185 (ISSN) Abdollahi, M ; Whitton, N ; Zand, R ; Dombovy, M ; Parnianpour, M ; Khalaf, K ; Rashedi, E ; Sharif University of Technology
    Frontiers Media S.A  2022
    Abstract
    Background/Purpose: To prevent falling, a common incident with debilitating health consequences among stroke survivors, it is important to identify significant fall risk factors (FRFs) towards developing and implementing predictive and preventive strategies and guidelines. This review provides a systematic approach for identifying the relevant FRFs and shedding light on future directions of research. Methods: A systematic search was conducted in 5 popular research databases. Studies investigating the FRFs in the stroke community were evaluated to identify the commonality and trend of FRFs in the relevant literature. Results: twenty-seven relevant articles were reviewed and analyzed spanning... 

    The effects of movement speed on kinematic variability and dynamic stability of the trunk in healthy individuals and low back pain patients

    , Article Clinical Biomechanics ; Volume 30, Issue 7 , Aug , 2015 , Pages 682-688 ; 02680033 (ISSN) Asgari, M ; Sanjari, M. A ; Mokhtarinia, H. R ; Moeini Sedeh, S ; Khalaf, K ; Parnianpour, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Background: Comparison of the kinematic variability and dynamic stability of the trunk between healthy and low back pain patient groups can contribute to gaining valuable information about the movement patterns and neuromotor strategies involved in various movement tasks. Methods: Fourteen chronic low back pain patients with mild symptoms and twelve healthy male volunteers performed repeated trunk flexion-extension movements in the sagittal plane at three different speeds: 20 cycles/min, self-selected, and 40 cycles/min. Mean standard deviations, coefficient of variation and variance ratio as variability measures; maximum finite-time Lyapunov exponents and maximum Floquet multipliers as... 

    Using a motion sensor to categorize nonspecific low back pain patients: A machine learning approach

    , Article Sensors (Switzerland) ; Volume 20, Issue 12 , 2020 , Pages 1-16 Abdollahi, M ; Ashouri, S ; Abedi, M ; Azadeh Fard, N ; Parnianpour, M ; Khalaf, K ; Rashedi, E ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Nonspecific low back pain (NSLBP) constitutes a critical health challenge that impacts millions of people worldwide with devastating health and socioeconomic consequences. In today’s clinical settings, practitioners continue to follow conventional guidelines to categorize NSLBP patients based on subjective approaches, such as the STarT Back Screening Tool (SBST). This study aimed to develop a sensor-based machine learning model to classify NSLBP patients into different subgroups according to quantitative kinematic data, i.e., trunk motion and balance-related measures, in conjunction with STarT output. Specifically, inertial measurement units (IMU) were attached to the trunks of ninety-four... 

    The biomechanical response of the lower cervical spine post laminectomy: geometrically-parametric patient-specific finite element analyses

    , Article Journal of Medical and Biological Engineering ; Volume 41 , 29 October , 2020 , Pages 59-70 Nikkhoo, M ; Cheng, C. H ; Wang, J. L ; Niu, C. C ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2020
    Abstract
    Purpose: This study aimed to investigate the biomechanical impact of laminectomy on cervical intersegmental motion and load sharing using a parametric patient-specific finite element (FE) model towards providing clinicians with a viable quantitative tool for informed decision-making and improved surgical planning. Methods: Ten subject-specific nonlinear osteo-ligamentous cervical spine (C3–C7) FE models were developed using X-ray image-based algorithms. The models were used to evaluate the effect of laminectomy on lower cervical spine biomechanics for two-level (C3–C4) and three-level (C3–C5) laminectomy procedures. Results: The average cervical spine ranges of motion (ROM) for the pre-op... 

    The biomechanical response of the lower cervical spine post laminectomy: geometrically-parametric patient-specific finite element analyses

    , Article Journal of Medical and Biological Engineering ; Volume 41, Issue 1 , 2021 , Pages 59-70 ; 16090985 (ISSN) Nikkhoo, M ; Cheng, C. H ; Wang, J. L ; Niu, C. C ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Purpose: This study aimed to investigate the biomechanical impact of laminectomy on cervical intersegmental motion and load sharing using a parametric patient-specific finite element (FE) model towards providing clinicians with a viable quantitative tool for informed decision-making and improved surgical planning. Methods: Ten subject-specific nonlinear osteo-ligamentous cervical spine (C3–C7) FE models were developed using X-ray image-based algorithms. The models were used to evaluate the effect of laminectomy on lower cervical spine biomechanics for two-level (C3–C4) and three-level (C3–C5) laminectomy procedures. Results: The average cervical spine ranges of motion (ROM) for the pre-op... 

    Is there a reliable and invariant set of muscle synergy during isometric biaxial trunk exertion in the sagittal and transverse planes by healthy subjects?

    , Article Journal of Biomechanics ; Volume 48, Issue 12 , Sep , 2015 , Pages 3234-3241 ; 00219290 (ISSN) Sedaghat Nejad, E ; Mousavi, S. J ; Hadizadeh, M ; Narimani, R ; Khalaf, K ; Campbell Kyureghyan, N ; Parnianpour, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    It has been suggested that the central nervous system simplifies muscle control through basic units, called synergies. In this study, we have developed a novel target-matching protocol and used non-negative matrix factorization (NMF) technique to extract trunk muscle synergies and corresponding torque synergies. Isometric torque data at the L5/S1 level and electromyographic patterns of twelve abdominal and back muscles from twelve healthy participants (five females) were simultaneously recorded. Each participant performed a total number of 24 isometric target-matching tasks using 12 different angular directions and 2 levels of uniaxial and biaxial exertions. Within- and between-subject... 

    Trunk dynamic stability assessment for individuals with and without nonspecific low back pain during repetitive movement

    , Article Human Factors ; 2020 Asgari, M ; Mokhtarinia, H. R ; Sanjari, M. A ; Kahrizi, S ; Philip, G. C ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    SAGE Publications Inc  2020
    Abstract
    Objective: This study aimed to employ nonlinear dynamic approaches to assess trunk dynamic stability with speed, symmetry, and load during repetitive flexion-extension (FE) movements for individuals with and without nonspecific low back pain (NSLBP). Background: Repetitive trunk FE movement is a typical work-related LBP risk factor contingent on speed, symmetry, and load. Improper settings/adjustments of these control parameters could undermine the dynamic stability of the trunk, hence leading to low back injuries. The underlying stability mechanisms and associated control impairments during such dynamic movements remain elusive. Method: Thirty-eight male volunteers (19 healthy, 19 NSLBP)... 

    Estimation of trunk muscle forces using a bio-inspired control strategy implemented in a neuro-osteo-ligamentous finite element model of the lumbar spine

    , Article Frontiers in Bioengineering and Biotechnology ; Volume 8 , 2020 Sharifzadeh Kermani, A ; Arjmand, N ; Vossoughi, G ; Shirazi Adl, A ; Patwardhan, A. G ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    Frontiers Media S.A  2020
    Abstract
    Low back pain (LBP), the leading cause of disability worldwide, remains one of the most common and challenging problems in occupational musculoskeletal disorders. The effective assessment of LBP injury risk, and the design of appropriate treatment modalities and rehabilitation protocols, require accurate estimation of the mechanical spinal loads during different activities. This study aimed to: (1) develop a novel 2D beam-column finite element control-based model of the lumbar spine and compare its predictions for muscle forces and spinal loads to those resulting from a geometrically matched equilibrium-based model; (2) test, using the foregoing control-based finite element model, the... 

    Linear and non-linear dynamic methods toward investigating proprioception impairment in non-specific low back pain patients

    , Article Frontiers in Bioengineering and Biotechnology ; Volume 8 , 2020 Shokouhyan, S. M ; Davoudi, M ; Hoviattalab, M ; Abedi, M ; Bervis, S ; Parnianpour, M ; Brumagne, S ; Khalaf, K ; Sharif University of Technology
    Frontiers Media S.A  2020
    Abstract
    Central nervous system (CNS) uses vision, vestibular, and somatosensory information to maintain body stability. Research has shown that there is more lumbar proprioception error among low back pain (LBP) individuals as compared to healthy people. In this study, two groups of 20 healthy people and 20 non-specific low back pain (NSLBP) participants took part in this investigation. This investigation focused on somatosensory sensors and in order to alter proprioception, a vibrator (frequency of 70 Hz, amplitude of 0.5 mm) was placed on the soleus muscle area of each leg and two vibrators were placed bilaterally across the lower back muscles. Individuals, whose vision was occluded, were placed... 

    Trunk dynamic stability assessment for individuals with and without nonspecific low back pain during repetitive movement

    , Article Human Factors ; Volume 64, Issue 2 , 2022 , Pages 291-304 ; 00187208 (ISSN) Asgari, M ; Mokhtarinia, H. R ; Sanjari, M. A ; Kahrizi, S ; Philip, G. C ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    SAGE Publications Inc  2022
    Abstract
    Objective: This study aimed to employ nonlinear dynamic approaches to assess trunk dynamic stability with speed, symmetry, and load during repetitive flexion-extension (FE) movements for individuals with and without nonspecific low back pain (NSLBP). Background: Repetitive trunk FE movement is a typical work-related LBP risk factor contingent on speed, symmetry, and load. Improper settings/adjustments of these control parameters could undermine the dynamic stability of the trunk, hence leading to low back injuries. The underlying stability mechanisms and associated control impairments during such dynamic movements remain elusive. Method: Thirty-eight male volunteers (19 healthy, 19 NSLBP)... 

    Distinction of non-specific low back pain patients with proprioceptive disorders from healthy individuals by linear discriminant analysis

    , Article Frontiers in Bioengineering and Biotechnology ; Volume 10 , 2022 ; 22964185 (ISSN) Shokouhyan, S. M ; Davoudi, M ; Hoviattalab, M ; Abedi, M ; Bervis, S ; Parnianpour, M ; Brumagne, S ; Khalaf, K ; Sharif University of Technology
    Frontiers Media S.A  2022
    Abstract
    The central nervous system (CNS) dynamically employs a sophisticated weighting strategy of sensory input, including vision, vestibular and proprioception signals, towards attaining optimal postural control during different conditions. Non-specific low back pain (NSLBP) patients frequently demonstrate postural control deficiencies which are generally attributed to challenges in proprioceptive reweighting, where they often rely on an ankle strategy regardless of postural conditions. Such impairment could lead to potential loss of balance, increased risk of falling, and Low back pain recurrence. In this study, linear and non-linear indicators were extracted from center-of-pressure (COP) and... 

    The effects of a short-term memory task on postural control of stroke patients

    , Article Topics in Stroke Rehabilitation ; Volume 22, Issue 5 , 2015 , Pages 335-341 ; 10749357 (ISSN) Mehdizadeh, H ; Taghizadeh, G ; Ghomashchi, H ; Parnianpour, M ; Khalaf, K ; Salehi, R ; Esteki, A ; Ebrahimi, I ; Sangelaji, B ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    Background: Many studies have been conducted on the changes in the balance capabilities of stroke patients. However, results regarding the effects of dual-task activities on postural control in these patients have been variable. Objective: To evaluate the effects of a short-term memory task on the sway characteristics of stroke patients. Method: Center of pressure (COP) fluctuations were measured in three levels of postural difficulty (rigid surface with closed and open eyes and foamsurface with closed eyes), aswell as two levels of cognitive difficulty (easy and difficult). COP parameters included mean velocity, standard deviation of velocity in both medial-lateral (M.L) and... 

    A practical sensor-based methodology for the quantitative assessment and classification of chronic non specific low back patients (NSLBP) in clinical settings

    , Article Sensors (Switzerland) ; Volume 20, Issue 10 , 2020 Davoudi, M ; Shokouhyan, S. M ; Abedi, M ; Meftahi, N ; Rahimi, A ; Rashedi, E ; Hoviattalab, M ; Narimani, R ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    The successful clinical application of patient-specific personalized medicine for the management of low back patients remains elusive. This study aimed to classify chronic nonspecific low back pain (NSLBP) patients using our previously developed and validated wearable inertial sensor (SHARIF-HMIS) for the assessment of trunk kinematic parameters. One hundred NSLBP patients consented to perform repetitive flexural movements in five different planes of motion (PLM): 0◦ in the sagittal plane, as well as 15◦ and 30◦ lateral rotation to the right and left, respectively. They were divided into three subgroups based on the STarT Back Screening Tool. The sensor was placed on the trunk of each... 

    Improvement of upper limb motor control and function after competitive and noncompetitive volleyball exercises in chronic stroke survivors: a randomized clinical trial

    , Article Archives of Physical Medicine and Rehabilitation ; Volume 100, Issue 3 , 2019 , Pages 401-411 ; 00039993 (ISSN) Mandehgary Najafabadi, M ; Azad, A ; Mehdizadeh, H ; Behzadipour, S ; Fakhar, M ; Taghavi Azar Sharabiani, P ; Parnianpour, M ; Taghizadeh, G ; Khalaf, K ; Sharif University of Technology
    W.B. Saunders  2019
    Abstract
    Objectives: To investigate the effects of competitive and noncompetitive volleyball exercises on the functional performance and motor control of the upper limbs in chronic stroke survivors. Design: Randomized clinical trial. Setting: Outpatient rehabilitation center. Participants: Chronic stroke survivors (N=48). Interventions: Participants were randomly assigned to competitive (n=16) or noncompetitive (n=16) volleyball exercise groups (60min/d volleyball exercise+30min/d traditional rehabilitation, 3d/wk for 7wk) and control group (n=16). Main Outcome Measures: Reach and grasp motor control measures were evaluated through kinematic analysis. Functional outcomes were assessed via Motor...