Loading...
Search for: khandan--vahid
0.116 seconds

    Estimating an Index of Iran’s Informal Economy in 1350-1386 With Concentration on the Impact of Government’s Intervention by EMIMIC Model (The Multiple Indicators-Multiple Causes Model and Error-Correction Model)

    , M.Sc. Thesis Sharif University of Technology Khandan, Abbas (Author) ; Nili, Masoud (Supervisor)
    Abstract
    In this research, an Index of Iran informal economy in response to the government interventions in credit, labor and product markets is stimated by EMIMIC model. To do this, first these interventions are measured using principal components analysis. In the model, the variables GDP and employment are used as indicators and taxation rates, government distortions in credit, labor and product markets, government expenditure, per capita income, unemployment and inflation as causes of the informal economy. We conclude these government interventions have affected Iran informal economy and their influence is more than indirect interventions influence such as taxation. The estimated index of Iran... 

    Government interventions and the size of the informal economy. The case of Iran (1971-2007)

    , Article Journal of Economic Policy Reform ; Vol. 17, issue. 1 , 2014 , pp. 71-90 ; ISSN: 17487870 Khandan, A ; Nili, M ; Sharif University of Technology
    2014
    Abstract
    Literature on the informal economy can mainly be divided into two different contrasting theories. According to the dual labor market theory (DLM), which considers the informal economy as a spare sector providing jobs for formally unemployed resources, unpleasant economic situations force people to act informally. Legalists, on the other hand, blame government interventions such as minimum wages or price control policies for pushing rent-seeking firms toward the shadows. This study using an Error-correction Multi-Indicators Multi-Causes (EMIMIC) model, a systematic method consisting of structural and measurement equations, shows that these two theories are complementary rather than... 

    Direct production of dimethyl ether from synthesis gas utilizing a new bifunctional catalyst

    , Article 19th International Congress of Chemical and Process Engineering, CHISA 2010 and 7th European Congress of Chemical Engineering, ECCE-7, 28 August 2010 through 1 September 2010, Prague ; 2010 Khandan, N ; Kazemeini, M ; Aghaziarati, M ; Sharif University of Technology
    2010
    Abstract
    A series of bifunctional catalysts Cu-ZnO-ZrO 2/Al-modified H-Mordenite were prepared by co precipitating sedimentation method and were characterized. Active sites were dispersed well. The synthesis of dimethyl ether (DME) via direct CO hydrogenation was evaluated in a three-phase slurry reactor. Cu-ZnO-ZrO 2/Al-modified H-Mordenite was a suitable catalyst for the production of dimethyl ether from synthesis gas. The appropriate ratio of methanol synthesis catalyst (Cu-ZnO-ZrO 2) to methanol dehydration catalyst (Al-modified H Mordenite) was 2:1. In this condition, CO conversion and DME selectivity were ≈ 68% and 82%, respectively. This is an abstract of a paper presented at the 7th European... 

    Synthesis of dimethyl ether over modified H-mordenite zeolites and bifunctional catalysts composed of Cu/ZnO/ZrO2 and modified H-mordenite zeolite in slurry phase

    , Article Catalysis Letters ; Volume 129, Issue 1-2 , 2009 , Pages 111-118 ; 1011372X (ISSN) Khandan, N ; Kazemeini, M ; Aghaziarati, M ; Sharif University of Technology
    2009
    Abstract
    Synthesis of dimethyl ether (DME) via methanol dehydration were investigated over various catalysts, and via direct CO hydrogenation over hybrid catalysts composed of Al-modified H-Mordenite zeolite and Cu/ZnO/ZrO 2. H-Mordenite zeolite exhibited the highest activity in dehydration of methanol. However, its selectivity toward dimethyl ether was rather low. For this reason, the H-Mordenite was modified. Modification of zeolites was performed by wet impregnation method and considered catalysts were characterized by AAS, XRD and NH3-TPD analyses. Results of catalytic tests indicated that H-Mordenite modified with 8 wt% aluminum oxide was the best catalyst for synthesis of dimethyl ether from... 

    Determining an optimum catalyst for liquid-phase dehydration of methanol to dimethyl ether

    , Article Applied Catalysis A: General ; Volume 349, Issue 1-2 , 2008 , Pages 6-12 ; 0926860X (ISSN) Khandan, N ; Kazemeini, M ; Aghaziarati, M ; Sharif University of Technology
    2008
    Abstract
    The liquid-phase dehydration of methanol to dimethyl ether was investigated over various materials including synthetic zeolites, namely, ZSM-5, Y, Mordenite, Ferrierite and Beta as well as silica and alumina. The key characters investigated were the Si/Al ratio and cation exchange. The results showed that the Mordenite zeolite exchanged with H+ exhibited the highest activity in dehydration of methanol. After finding the most active catalyst, the Mordenite zeolite was modified with Cu, Zn, Ni, Al, Zr, Mg and Na via wet-impregnation method to further improve its selectivity, and characterized by AAS, XRD, NH3-TPD, NH3-FT-IR and BET surface area techniques. It was found that these materials... 

    Designing a new multifunctional peptide for metal chelation and Aβ inhibition

    , Article Archives of Biochemistry and Biophysics ; Volume 653 , 2018 , Pages 1-9 ; 00039861 (ISSN) Shamloo, A ; Asadbegi, M ; Khandan, V ; Amanzadi, A ; Sharif University of Technology
    Academic Press Inc  2018
    Abstract
    According to the Amyloid hypothesis, as the foremost scientific explanation for Alzheimer Disease (AD), the neuropathology of AD is related to toxic fragments of amyloid beta (Aβ) protein. Based on this hypothesis, an attractive therapeutic approach was demonstrated to identify multifunctional peptides able to modulate Aβ pathologies as the source of AD. On this premise, a bifunctional polypeptide based on the iAβ5p lead compound, was designed to inhibit Aβ aggregation and free metal ions. Herein, the efficacy of this novel drug in Zn2+ and Cd2+ ion chelation was examined through an integrated technique comprising combined Docking, QM, and MD simulations. MD relaxation of a set of probable... 

    Hydrogenation of maleic anhydride to tetrahydrofuran using bifunctional catalysts

    , Article 18th International Congress of Chemical and Process Engineering, CHISA 2008, Prague, 24 August 2008 through 28 August 2008 ; 2008 Aghaziarati, M ; Kazemeini, M ; Soltanieh, M ; Khandan, N ; Sharif University of Technology
    2008
    Abstract
    A series of bifunctional catalysts, including Cu-ZnO-ZrO 2 and H-Y zeolite catalysts, were prepared and tested for conversion of maleic anhydride (MA) to tetrahydrofuran (THF). Cu-ZnO-ZrO 2 catalyst was used as the hydrogenating component and H-Y zeolite as the dehydrating component. The appropriate ratio of Cu/ZnO in the hydrogenation catalyst was 50:45, for which the conversion of MA and selectivity of THF reached 100 and 46%, respectively, at 50 bar and 493 K. The bifunctional catalyst of Cu-ZnOZrO 2/H-Y can produce THF from MA with high activity, selectivity, and stability. This is an abstract of a paper presented at the 18th International Congress of Chemical and Process Engineering... 

    Synthesis of tetrahydrofuran from maleic anhydride on Cu-ZnO-ZrO2/H-Y bifunctional catalysts

    , Article Catalysis Communications ; Volume 9, Issue 13 , 2008 , Pages 2195-2200 ; 15667367 (ISSN) Aghaziarati, M ; Soltanieh, M ; Kazemeini, M ; Khandan, N ; Sharif University of Technology
    2008
    Abstract
    A series of bifunctional Cu-ZnO-ZrO2/H-Y catalysts of different compositions were prepared by coprecipitating sedimentation method and were characterized by surface area and XRD analyses. The catalytic performance in synthesis of tetrahydrofuran was evaluated and optimized in a three-phase slurry batch reactor. The experimental results showed that the appropriate ratio of Cu/ZnO in the hydrogenation catalyst was 50/45, for which the conversion of maleic anhydride (MA) and selectivity of tetrahydrofuran (THF) reached 100% and 46%, respectively, at 50 bar and 493 K after 6 h of operation. Also, according to these results, it was demonstrated that the incorporation of zirconium oxide in the... 

    Designing of Transition Metal Oxide Spinels and their Applications in Kinetics Study of Electrochemical Degradation of Organic Pollutants

    , M.Sc. Thesis Sharif University of Technology Khandan Dezfoli, Fatemeh (Author) ; Rahman Setayesh, Shahrbanoo (Supervisor)
    Abstract
    Metronidazole is an antibiotic which widely used in medical applications, resulting in its presence both in water and wastewater. The electro-Fenton process has shown high efficiency in the non-selective degradation of organic pollutants. In this study, CuCexFe2-xO4/CuO nanocomposites were synthesized using the hydrothermal method and utilized for the degradation of metronidazole in the electro-Fenton process. The characterization of the catalysts was performed by FT-IR, FE-SEM, XRD, and ICP techniques.The XRD patterns confirmed the formation of monoclinic copper(II) oxide structure as well as the cubic crystal structure of CuCe0.05Fe1.95O4 spinel. The FE-SEM images confirmed the formation... 

    Synthesis and Characterization of a Copper Catalyst for Low Temperature Water –Gas Shift Reaction

    , M.Sc. Thesis Sharif University of Technology Rafiee Renani, Mansoureh (Author) ; Khorasheh, Farhad (Supervisor) ; Khandan, Nahid (Co-Advisor)
    Abstract
    Water Gas Shift (WGS) reaction is an old reaction in which syngas is used for producing Hydrogen. At the present time, the major application of this reaction is in fuel cells, since the necessary Hydrogen for these cells is provided by this reaction.
    The present study investigate the influence of different preparation methods on properties of Cu-ZnO/Al2O3 catalyst for water gas shift (WGS) reaction, which is now known as the Commercial catalyst for low temperature WGS, and its influence on performance of Cu-ZnO/Al2O3 catalyst to derive an optimal Cu-ZnO/Al2O3 catalyst for water gas shift (WGS) reaction. Cu-ZnO/Al2O3 catalysts was synthesized by CP, DP, DP-Ultra, IWI , CP-Urea, and... 

    Studying the Kinematics Compensation Mechanism in the Gait of Individuals with Excessive Anti-version using a Subject-Specific Musculoskeletal Model

    , M.Sc. Thesis Sharif University of Technology Khandan, Amin Reza (Author) ; Farahmand, Farzam (Supervisor) ; Narimani, Roya (Supervisor)
    Abstract
    In cases with excessive anteversion even after adolescence, surgeons have to choose osteotomy surgery to modify this abnormality. This surgery and modifying the anatomical problem does not necessarily lead to modify the patients’ gait cycle abnormalities; the authors’ hypothesis is the probable reason may be the persistence of the implement of the patients’ kinematics compensation mechanism even after the surgery. This mechanism is used to almost correct the gait of those with excessive anteversion. First, by using gait analysis text books, a patient’s gait cycle is analyzed; this analysis is consist of 3DGA with EMG and observational gait. Then, by using OpenSim, the patient’s patterns of... 

    Compositional Modeling of Surfactant Adsorption in Chemical Flooding with Verification with Laboratory Data

    , M.Sc. Thesis Sharif University of Technology Khandan, Hossein (Author) ; Jamshidi, Saeed (Supervisor) ; Ghazanfari, Mohammad Hossein (Supervisor)
    Abstract
    One of the most important EOR methods in oil reservoirs is surfactant and polymer flooding. Surfactants cause decreasing in interfacial tension between oleic and aqueous phases. However, polymers give us efficient mobility control in displacing oil by increasing the viscosity of aqueous phase. Therefore, oil is displaced in aqueous phase by viscous forces.
    One of the most important challenges in surfactant flooding is adsorption. The net surface charge distributed on the rock surface depends strongly on pH. When we inject surfactant in reservoir, electrostatic charge on rock surface causes the first-layer adsorption. After that we have had second-layer adsorption.
    In this thesis we... 

    Kinetics Study and Determining an Optimum Reactor Condition for Dimethyl-ether Synthesis by Dehydration of Methanol over Nano-Crystalline γ-Al2O3

    , M.Sc. Thesis Sharif University of Technology Alamolhoda, Sarah (Author) ; Kazemeini , Mohammad (Supervisor) ; Khorashe, Farhad (Supervisor) ; Khandan, Nahid (Supervisor)
    Abstract
    Dimethyl Ether (DME) is a pure and economic fuel which can be used as a suitable alternative for diesel fuels. Two processes are traditionally used for DME synthesis: producing methanol from synthesis gas and then dehydrating it to DME (direct process), and converting methanol into DME in a catalytic dehydration reactor over a solid-acid catalyst (indirect process), in which the indirect process seems to have economical advantage. In this research, the γ-Al2O3 catalyst was synthesized through precipitation process and then characterized by powder X-ray diffraction (XRD) and porosimetry analysis. Afterwards this catalyst was utilized in methanol dehydration reaction in a slurry reactor. Next,... 

    Studying the Behaviour and Performance of an Innovative Floating Offshore Platform

    , M.Sc. Thesis Sharif University of Technology Moradkhan, Esmaeil (Author) ; Khonsari, Vahid (Supervisor)
    Abstract
    The objective of this project is to study the behaviour and performance of an innotative floating offshore platform. Such Platform not only can be used for exploring oil from offshore fields, but for creating artificial islands, where land is in short supply. Due to its specific and, at the same time, simple geometry (symmetric), its fabrication does ont involve much complexity. Studies carried out on this platform include the investigation into its structural behaviour under gravitational (including self weight) and bouyancy forces. Studied cases include a number of platforms with different (geometrical) sizes and under 3 various bouyancy conditions (percentage), namely 1) 50% of the height... 

    The Study of The Behaviour of Steel Structures with Semi-Rigid Connections Subject to Fire

    , M.Sc. Thesis Sharif University of Technology Alanchari, Ehsan (Author) ; Khonsari, Vahid (Supervisor)
    Abstract
    Fire is one the events which threatens the very existence of every building, residential, office, industrial or else. However, this threat is more serious with regard to buildings with steel structures. Steel, despite its many advantages over other structural materials, such as having high strength to weight ratio, ductility, toughness and resilience, has the disadvantage of rapidly losing its strength at elevated temperatures, i.e. in fire. Therefore, it is the responsibility of the designer to make the serious decision of whether to use steel, concrete, timber, or other materials for the structure of the building to be designed. Observations made during full-scale fire tests as well as... 

    Study of the P-^ Effects on the Behavior of Split-Level Steel Structures

    , M.Sc. Thesis Sharif University of Technology Yarahmadi, Arash (Author) ; Khansari, Vahid (Supervisor)
    Abstract
    Due to unusual response of structures of buildings with irregularity in their architecture to dynamic excitations, to have a comprehensive knowledge of their behavior during earthquakes is of utmost importance. Building irregularities are in general divided into two major categories, namely Irregularity in Plane and Irregularity in Elevation, and one of the forms of the latter is where there is a split in the levels of the building. In this work, through a series of case studies, the effects of P- phenomenon on the behavior of steel split-level building structures were studied. 5, 10 and 15 story buildings with 5 and 6 bays, and level splitting of 30, 60, 90, 120 and 150 cm were studied. All... 

    Three Dimensional Simulation of Morphology of Nanodroplets Near and on Structured Substrates

    , M.Sc. Thesis Sharif University of Technology Vahid, Afshin (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    Mesoscopic hydrodynamic equations are solved employing a VOF based method to investigate the equilibrium shape of nanodroplets positioned over various topographic geometries of the supporting substrate for three-dimensional systems. By taking into account liquid-liquid and liquid-solid interactions a complex distribution for inter-molecular forces over the substrates (the disjoining pressure) is observed. In this research we show that motion of nanodroplets not only caused by contact angle difference in drplets two sides, but also depend on disjoining pressure parameters.Geometries with increasing complexities, from wedges to three dimensional edges and wedges, were explored with the main... 

    Investigating the Seismic Behaviour of Split-Level Building Structures

    , M.Sc. Thesis Sharif University of Technology Abdoli, Masoud (Author) ; Khonsari, Vahid (Supervisor)
    Abstract
    Observations made after previous earthquakes have shown the crucial role of irregularities in initiating damage in buildings with irregularity, either in Plan or in Elevation. Since in existing Building Codes, there is no provision for the distribution of the Equivalent Static Loads for such buildings, designers have no option but to resort to Dynamic Analysis. In this work, the seismic behaviour of a group of two-dimensional steel building structures with irregularity in elevation, namely Split-Level buildings, was studied. The studied structures consist of a series of 5- and 15-storey frames having two parts with splitting distance of 150 cm. Both, moment-resisting and braced frames were... 

    Numerical Study of Base Plates under Biaxial Bending

    , M.Sc. Thesis Sharif University of Technology baygi, Sajjad (Author) ; Khonsari, Vahid (Supervisor)
    Abstract
    Base plates as the connecting components of steel structures to their foundations, have a crucial role in the behavior of these structures. In order to limit the thickness of base plates hence their cost within reasonable values, various types of attachments (stiffeners) are normally added to them. In this project 6 different configurations, Models, for the base plate and its attachments were considered and studied through finite element analysis. Each Model was studied under the combination of biaxial moments and a range of compressive loads including 0, 0.05 P/Py, 0.10 P/Py and 0.15 P/Py, where Py is the plastic load of the column. The moment-rotation curves of all models under various... 

    Numerical Modeling of the Behavior of Base Plates with Various Degrees of Rigidity Under Cyclic Loads

    , M.Sc. Thesis Sharif University of Technology Rahimi, Javad (Author) ; Khonsari, Vahid (Co-Advisor)
    Abstract
    Due to the important role of base plates, both in transferring forces from the structure to the foundation, and also in transferring vibrations from soil to the structure, it is necessary to have sufficient knowledge on their behaviour and performance under monotonic and cyclic loading regimes. In fact, the behaviour of the supports of any structure cannot be identified without identifying the behaviour of its base plates. Numerous configurations with/without various types of attachments have been proposed and used for base plates. In this work, altogether six commonly-used types of base plates were studied and their behaviour under monotonic and cyclic loadings was obtained using commercial...