Loading...
Search for:
khansefid--a
0.183 seconds
Total 14662 records
Advanced two-step integrated optimization of actively controlled nonlinear structure under mainshock–aftershock sequences
, Article JVC/Journal of Vibration and Control ; 2018 ; 10775463 (ISSN) ; Bakhshi, A ; Sharif University of Technology
SAGE Publications Inc
2018
Abstract
In this paper, an attempt is made to examine a new method for designing and applying the active vibration control system to improve building performance under mainshock–aftershock sequences. In this regard, three different structures are considered; 5-, 10-, and 15-story buildings. Seven mainshock–aftershock sequences are selected from the Iranian accelerogram database for analyzing the structures. By implementing an advanced two-step optimization method, buildings equipped with the active vibration control system (linear–quadratic regulator (LQR) algorithm) are designed to withstand all events of mainshock–aftershock sequences. In the first optimization step, a multi-objective optimization...
Advanced two-step integrated optimization of actively controlled nonlinear structure under mainshock–aftershock sequences
, Article JVC/Journal of Vibration and Control ; Volume 25, Issue 4 , 2019 , Pages 748-762 ; 10775463 (ISSN) ; Bakhshi, A ; Sharif University of Technology
SAGE Publications Inc
2019
Abstract
In this paper, an attempt is made to examine a new method for designing and applying the active vibration control system to improve building performance under mainshock–aftershock sequences. In this regard, three different structures are considered; 5-, 10-, and 15-story buildings. Seven mainshock–aftershock sequences are selected from the Iranian accelerogram database for analyzing the structures. By implementing an advanced two-step optimization method, buildings equipped with the active vibration control system (linear–quadratic regulator (LQR) algorithm) are designed to withstand all events of mainshock–aftershock sequences. In the first optimization step, a multi-objective optimization...
Statistical evaluation and probabilistic modeling of aftershock sequences of Iranian plateau
, Article Journal of Seismology ; Volume 22, Issue 5 , 2018 , Pages 1249-1261 ; 13834649 (ISSN) ; Bakhshi, A ; Sharif University of Technology
Springer Netherlands
2018
Abstract
The present research focuses on the statistical evaluation of Iranian plateau aftershocks from an engineering perspective and presents probabilistic models applicable for generating random earthquake scenarios. Accordingly, a comprehensive earthquake data catalog including the period from 1964 to 2016 is prepared. Data are declustered into 37 separate mainshock-aftershock sequences by considering the completeness moment magnitude of the database. The well-known modified Omori occurrence rate formula is adopted to determine the recurrence time of the events, considering the effect of secondary aftershocks. In addition to computing the probability density functions of the parameters of the...
New model for simulating random synthetic stochastic earthquake scenarios
, Article Journal of Earthquake Engineering ; Volume 26, Issue 2 , 2022 , Pages 1072-1089 ; 13632469 (ISSN) ; Bakhshi, A ; Sharif University of Technology
Taylor and Francis Ltd
2022
Abstract
This research attempts to propose a new simulating model capable of generating synthetic stochastic earthquake scenario including both seismological, and acceleration signal properties. The Iranian plateau is selected as a mainland for developing the model due to the existence of high-quality earthquake databases. This model is composed of two sub-models. The first one generates random seismic event scenarios including mainshocks and aftershocks. The second one procreates 3-dimensional synthetic stochastic accelerograms for each of the previously simulated events. This scenario-based predictive model offers a powerful tool to the risk modelers interested in lifetime seismic risk assessment...
Empirical predictive model for generating synthetic non-stationary stochastic accelerogram of the Iranian plateau: including far- and near-field effects as well as mainshock and aftershock categorization
, Article Bulletin of Earthquake Engineering ; Volume 17, Issue 7 , 2019 , Pages 3681-3708 ; 1570761X (ISSN) ; Bakhshi, A ; Ansari, A ; Sharif University of Technology
Springer Netherlands
2019
Abstract
This work proposes comprehensive empirical predictive equations for generating stochastic synthetic 3-dimensional accelerograms for the Iranian plateau based on the existing database. First, the databank of Iranian accelerograms is collected, sorted, processed, declustered and categorized into the pulse-like and non-pulse-like data. To simulate the artificial accelerograms, a stochastic model capable of handling both the temporal and spectral non-stationarity of accelerograms is adopted. By implementing nonlinear curve fitting, parameters of the stochastic model are estimated. Then, the recorded events are categorized into eight distinct groups based on the existence of pulse-like...
Development of declustered processed earthquake accelerogram database for the Iranian Plateau: including near-field record categorization
, Article Journal of Seismology ; Volume 23, Issue 4 , 2019 , Pages 869-888 ; 13834649 (ISSN) ; Bakhshi, A ; Ansari, A ; Sharif University of Technology
Springer Netherlands
2019
Abstract
In this paper, a comprehensive accelerogram database of the Iranian plateau containing 3585 data with all three components is gathered. The raw data are processed by the wavelet-based denoising method, and results are compared with the contaminated data. All the data are classified into mainshock and aftershock categories using the time and spatial window method. Afterward, the data are categorized into the pulse-like and non-pulse-like events based on the detection of velocity pulse in any of horizontal and/or vertical directions. Eventually, among 3585 data, the ones with an average shear wave velocity of top 30 m of subsurface soil profile are selected and their important ground motion...
Seismic protection of LNG tanks with reliability based optimally designed combined rubber isolator and friction damper
, Article Earthquake and Structures ; Volume 16, Issue 5 , 2019 , Pages 523-532 ; 20927614 (ISSN) ; Maghsoudi Barmi, A ; Khaloo, A ; Sharif University of Technology
Techno Press
2019
Abstract
Different types of gas reservoir such as Liquid Natural Gas (LNG) are among the strategic infrastructures, and have great importance for any government or their private owners. To keep the tank and its contents safe during earthquakes especially if the contents are of hazardous or flammable materials; using seismic protection systems such as base isolator can be considered as an effective solution. However, the major deficiency of this system can be the large deformation in the isolation level which may lead to the failure of bearing system. In this paper, as a solution, the efficacy of an optimally designed combined vibration control system, the combined laminated rubber isolator and...
An investigation of the effects of structural nonlinearity on the seismic performance degradation of active and passive control systems used for supplemental energy dissipation
, Article JVC/Journal of Vibration and Control ; Volume 22, Issue 16 , 2016 , Pages 3544-3554 ; 10775463 (ISSN) ; Ahmadizadeh, M ; Sharif University of Technology
SAGE Publications Inc
2016
Abstract
It is generally accepted that active control systems provide better structural performance when compared to their passive counterparts. On the other hand, the design of active control systems based on linear control theory is highly dependent on the structural properties. For this reason, their performance is expected to be affected more severely by variations in structural properties compared to those of passive systems. These variations can occur due to nonlinear structural behavior, or even before that due to uncertainties in the estimation of these properties and in numerical modeling. The present work is an investigation of the dependency of various control systems used for supplemental...
An Investigation of the Effects of Structural Nonlinearity on the Performance of Active and Passive Control Systems
, M.Sc. Thesis Sharif University of Technology ; Ahmadizadeh, Mehdi (Supervisor)
Abstract
This study is an investigation of the effects of structural nonlinearities on the performance of different structural vibration control systems, including active control using LQR algorithm and passive control using viscous fluid dampers and hysteretic dampers. By designing the control systems for linear structurs and comparing their performances in nonlinear response range, the abilities of these control systems to handle structural nonlinearities are compared. In other words, the dependency of these control systems on the properties of the structure (which may be altered by nonlinearities or uncertainties in estimations) is assessed. It is demonstrated that as a general trend, the ability...
Probabilistic Optimization of Structures Equipped with Active Vibration Control Systems Under Probable Mainshock-Aftershock Sequences
, Ph.D. Dissertation Sharif University of Technology ; Bakhshi, Ali (Supervisor) ; Ansari, Anoushiravan (Supervisor)
Abstract
Nowadays, the usage of probabilistic and reliability based frameworks is growing fast with respect to the development of computers. One of the most important issues which can be dealt in the field of structural/earthqauke engineering is the performance evaluation of the buildings equipped with active vibration control systems. In this research, in order to evaluate the performance of buildings probabilistically, the sampling simulation methods are applied. Accordingly, both structures and the loadings during their lifetime are considered as random variables. Therefore, at beginning, it is necessary to propose a model which is capable of producing structures with random properties. In this...
Intelligent semi-active vibration control of eleven degrees of freedom suspension system using magnetorheological dampers
, Article Journal of Mechanical Science and Technology ; Volume 26, Issue 2 , 2012 , Pages 323-334 ; 1738494X (ISSN) ; Sarrafan, A ; Khayyat, A. A. A ; Zabihollah, A ; Sharif University of Technology
2012
Abstract
A novel intelligent semi-active control system for an eleven degrees of freedom passenger car's suspension system using magnetorheological (MR) damper with neuro-fuzzy (NF) control strategy to enhance desired suspension performance is proposed. In comparison with earlier studies, an improvement in problem modeling is made. The proposed method consists of two parts: a fuzzy control strategy to establish an efficient controller to improve ride comfort and road handling (RCH) and an inverse mapping model to estimate the force needed for a semi-active damper. The fuzzy logic rules are extracted based on Sugeno inference engine. The inverse mapping model is based on an artificial neural network...
Performance and exhaust emission characteristics of a spark ignition engine operated with gasoline and CNG blend
, Article Proceedings of the Spring Technical Conference of the ASME Internal Combustion Engine Division ; 2012 , Pages 179-187 ; 15296598 (ISSN) ; 9780791844663 (ISBN) ; Hamidi, A. A ; Mozafari, A. A ; Sharif University of Technology
2012
Abstract
Using CNG as an additive for gasoline is a proper choice due to higher octane number of CNG enriched gasoline with respect to that of gasoline. As a result, it is possible to use gasoline with lower octane number in the engine. This would also mean the increase of compression ratio in SI engines resulting in higher performance and lower gasoline consumption. Over the years, the use of simulation codes to model the thermodynamic cycle of an internal combustion engine have developed tools for more efficient engine designs and fuel combustion. In this study, a thermodynamic cycle simulation of a conventional four-stroke spark-ignition engine has been developed. The model is used to study the...
A comparative study of the performance of a SI engine fuelled by natural gas as alternative fuel by thermodynamic simulation
, Article 2009 ASME Internal Combustion Engine Division Fall Technical Conference, ICEF 2009, Lucerne, 27 September 2009 through 30 September 2009 ; 2009 , Pages 49-57 ; 9780791843635 (ISBN) ; Hamidi, A. A ; Mozafari, A. A ; Sharif University of Technology
American Society of Mechanical Engineers (ASME)
2009
Abstract
With the declining energy resources and increase of pollutant emissions, a great deal of efforts has been focused on the development of alternatives for fossil fuels. One of the promising alternative fuels to gasoline in the internal combustion engine is natural gas [1-5]. The application of natural gas in current internal combustion engines is realistic due to its many benefits. The higher thermal efficiency due to the higher octane value and lower exhaust emissions including CO2 as a result of the lower carbon to hydrogen ratio of the fuel are the two important feature of using CNG as an alternative fuel. It is well known that computer simulation codes are valuable economically as a cost...
Analytical and experimental analyses of nonlinear vibrations in a rotary inverted pendulum
, Article Nonlinear Dynamics ; Volume 107, Issue 3 , 2022 , Pages 1887-1902 ; 0924090X (ISSN) ; Pasharavesh, A ; Khayyat, A. A. A ; Sharif University of Technology
Springer Science and Business Media B.V
2022
Abstract
Gaining insight into possible vibratory responses of dynamical systems around their stable equilibria is an essential step, which must be taken before their design and application. The results of such a study can significantly help prevent instability in closed-loop stabilized systems by avoiding the excitation of the system in the neighborhood of its resonance. This paper investigates nonlinear oscillations of a rotary inverted pendulum (RIP) with a full-state feedback controller. Lagrange’s equations are employed to derive an accurate 2-DoF mathematical model, whose parameter values are extracted by both the measurement and 3D modeling of the real system components. Although the governing...
A suction-controlled ring device to measure the coefficient of lateral soil pressure in unsaturated soils
, Article Geotechnical Testing Journal ; Volume 44, Issue 1 , 2020 ; Garakani, A. A ; Golshani, A ; Mirzaii, A ; Sharif University of Technology
ASTM International
2020
Abstract
A suction-controlled ring device has been developed to continuously measure the coefficient of lateral soil pressure in deformable unsaturated soil samples from the at-rest to the active condition under application of increasing vertical pressure and controlled matric suction. The device incorporates a thin aluminum specimen ring equipped with horizontal strain gages for recording the lateral soil strains. In addition, a sensor recording water volume changes is utilized to continuously monitor the degree of saturation of the soil sample during tests. The matric suction within the soil texture is controlled using the axis translation technique. In order to verify the performance of the ring...
Gum tragacanth gels as a new supporting matrix for immobilization of whole-cell
, Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 24, Issue 4 , 2005 , Pages 1-7 ; 10219986 (ISSN) ; Vaziri, A ; Seifkordi, A. A ; Kheirolomoom, A ; Sharif University of Technology
2005
Abstract
We introduce a new smooth, non-toxic, biocompatible method for cross-linking of gum tragacanth (GT), a polysaccharide of natural origin, in order to serve as a new supporting matrix for immobilization systems. The modified gum is used as a matrix for the catalysis of the conversion of benzyl penicillin to 6-aminopenicillanic acid (6-APA) by means of Escherichia coli ATCC11105 with penicillin G acylase (PGA) activity. The results show that GT beads can not only serve as a proper matrix for immobilization, but show enhanced hydrolysis rate and stability compared to other immobilization systems used for this reaction. This signifies the potential of GT as a biocompatible matrix for...
True Class-E Design For Inductive Coupling Wireless Power Transfer Applications
, Article 30th International Conference on Electrical Engineering, ICEE 2022, 17 May 2022 through 19 May 2022 ; 2022 , Pages 864-868 ; 9781665480871 (ISBN) ; Safarian, A ; Fotowat Ahmady, A ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2022
Abstract
The Class-E power amplifier has been widely studied and formulated in the literature. Although the majority of reported inductive coupling wireless power transfer (WPT) systems use a class-E power amplifier for driving the primary coil, still there is a lack of a comprehensive study on class-E circuit dedicated to WPT, providing a set of closed form design equations for proper class-E operation. This paper presents the required design equations needed to design a 'true' class-E circuit for WPT applications. Equations for the series-tuned secondary coil WPT system are presented, as well as two different design procedures for the parallel-tuned secondary coil. The derived equations have been...
Crashworthiness determination of side doors and B pillar of a vehicle subjected to pole side impact
, Article Applied Mechanics and Materials ; Vol. 663, issue , 2014 , p. 552-556 ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
2014
Abstract
Pole Side Impact Tes is one out of three crash tests described by Euro NCAP standard for star rating of a vehicle and is required for assessing the Adult Occupant Protection. In this paper the goal is to determine the crashworthiness of side doors and B pillar in a Pole Side Impact Test based on Euro New Car Assessment Program (Euro-NCAP) using computer and simulation method. In this matter, a vehicle model has been prepared and meshed using Hypermesh and CATIA. The velocity of 29 km/h has been assigned to the vehicle which was on top of a cart while the pole has been assigned as a rigid static object based on Euro NCAP requirements specifically. Results show that different amounts of energy...
Investigation of Thickness Influences On Energy Absorption For Side Doors And B Pillar In Euro NCAP Pole Side Impact Test
, Article Applied Mechanics and Materials ; Vol. 663, issue , Oct , 2014 , p. 585-589 ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
2014
Abstract
To assess a car under the Euro New Car Assessment Program (Euro-NCAP), Adult Occupant Protection is one out of three parameters which need to be calculated with a weight factor of 50% while the other parameters, Child Occupant Protection and Pedestrian Occupant Protection, have a weight factor of 20%. The Pole Side Impact Test, beside two other tests, Side and Front Impact, is also required to calculate the Adult Occupant Protection. It shows how important the Pole Side Impact Test is and what an effective role it has in the car rating assessment. In this paper, the objective is to evaluate the effect of thickness on the energy absorbed by the side doors and the B pillar and its...
Crashworthiness determination for front and rear doors and B pillar subjected to side impact crash by a mobile deformable barrier
, Article Advanced Science Letters ; Volume 19, Issue 2 , 2013 , Pages 392-395 ; 19366612 (ISSN) ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
2013
Abstract
In Euro NCAP standard, adult protection is one of the most important rating scores with 50% weight factor while child protection and pedestrian protection are accounted into consideration with 20% weight factor. For adult protection testing, three tests are required to perform: (1) side impact, (2) pole impact, (3) front impact. In the side impact test, dummy's head, chest, shoulder, thorax, ribs, abdomen, pelvic and femur must be studied to evaluate the rating score. Crashworthiness of a car during side impact can describe the score rated for that car. In this paper the goal is to determine the crashworthiness of side doors and B-pillar in side impact crash est by simulation using LS DYNA...