Loading...
Search for: khavasi--e
0.149 seconds

    Toward electrically tunable, lithography-free, ultra-thin color filters covering the whole visible spectrum

    , Article Scientific Reports ; Volume 8, Issue 1 , 2018 ; 20452322 (ISSN) Aalizadeh, M ; Serebryannikov, A. E ; Khavasi, A ; Vandenbosch, G. A. E ; Ozbay, E ; Sharif University of Technology
    Nature Publishing Group  2018
    Abstract
    The possibility of real-time tuning of optical devices has attracted a lot of interest over the last decade. At the same time, coming up with simple lithography-free structures has always been a challenge in the design of large-area compatible devices. In this work, we present the concept and the sample design of an electrically tunable, lithography-free, ultra-thin transmission-mode color filter, the spectrum of which continuously covers the whole visible region. A simple Metal-Insulator-Metal (MIM) cavity configuration is used. It is shown that using the electro-optic dielectric material of 4-dimethyl-amino-N-methyl-4-stilbazoliumtosylate (DAST) as the dielectric layer in this... 

    Circuit model in design of THz transparent electrodes based on two-dimensional arrays of metallic square holes

    , Article IEEE Transactions on Terahertz Science and Technology ; Vol. 4, issue. 3 , April , 2014 , p. 383-390 Shirmanesh, G. K ; Yarmoghaddam, E ; Khavasi, A ; Mehrany, K ; Sharif University of Technology
    2014
    Abstract
    In this paper, we propose a circuit model for two-dimensional arrays of metallic square holes located on a homogeneous substrate, in order to propose a new scheme containing this type of metamaterials to obtain transparent electrodes with simultaneous terahertz transparency and low electrical resistance. The results of the introduced circuit model, which is a fully analytical model with explicit expressions, are in almost complete agreement with the full-wave simulations. Thanks to this analytical model, we can employ standard binomial matching transformer in order to minimize the reflected power from the structure at a desired frequency. Furthermore, taking advantage of this model, we... 

    Erratum: Circuit model in design of THZ transparent electrodes based on two-dimensional arrays of metallic square holes (IEEE transactions on terahertz science and technology (2014) 4:3 (383-390))

    , Article IEEE Transactions on Terahertz Science and Technology ; Volume 5, Issue 4 , June , 2015 , Pages 655-656 ; 2156342X (ISSN) Khavasi, A ; Mehrany, K ; Shirmanesh, G. K ; Yarmoghaddam, E ; Sharif University of Technology
    IEEE Microwave Theory and Techniques Society  2015
    Abstract
    A circuit model has been proposed for two-dimensional metallic arrays of metallic square holes located on a homogeneous substrate. Although the proposed circuit model holds true, the surface admittance between the metallic hole array and the cover was erroneously calculated since the presence of the cross-polarization terms had been neglected. Furthermore, there have been mistakes in numerical simulation and in analytical calculations based on the presented formulas. The correct formulation is now given, and erroneous figures are replotted  

    Linear analysis of the stability of particle-laden stratified shear layers

    , Article Canadian Journal of Physics ; Vol. 92, issue. 2 , 2014 , pp. 103-115 ; ISSN: 00084204 Khavasi, E ; Firoozabadi, B ; Afshin, H
    2014
    Abstract
    Hydrodynamic instabilities at the interface of stratified shear layers could occur in various modes and have an important role in the mixing process. In this work, the linear stability analysis in the temporal framework is used to study the stability characteristics of a particle-laden stratified two-layer flow for two different background density profiles: smooth (hyperbolic tangent) and piecewise linear. The effect of parameters, such as bed slope, viscosity, and particle size, on the stability is also considered. The pseudospectral collocation method employing Chebyshev polynomials is used to solve two coupled eigenvalue equations. Based on the results, there are some differences in the... 

    Fast convergent Fourier modal method for the analysis of periodic arrays of graphene ribbons

    , Article Optics Letters ; Volume 38, Issue 16 , 2013 , Pages 3009-3012 ; 01469592 (ISSN) Khavasi, A ; Sharif University of Technology
    2013
    Abstract
    Li's Fourier factorization rules [J. Opt. Soc. Am. A 13, 1870 (1996)] should be applied to achieve a fast convergence rate in the analysis of diffraction gratings with the Fourier modal method. I show, however, that Li's inverse rule cannot be applied for periodic patterns of graphene when the conventional boundary condition is used. I derive an approximate boundary condition in which a nonzero but sufficiently small height is assumed for the boundary. The proposed boundary condition enables us to apply the inverse rule, leading to a significantly improved convergence rate. A periodic array of graphene ribbons is in fact a special type of finite-conductivity strip grating, and thus the... 

    Design of ultra-broadband graphene absorber using circuit theory

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 32, Issue 9 , 2015 , Pages 1941-1946 ; 07403224 (ISSN) Khavasi, A ; Sharif University of Technology
    2015
    Abstract
    I propose a novel method for designing a broadband THz absorber by using periodic arrays of graphene ribbons on a Salisbury-screen-like structure. The recently proposed analytical circuit model of graphene arrays is used for obtaining analytical expressions for the input admittance of the proposed device. The input admittance is then adjusted to be closely matched to the free space in a wide frequency range. Consequently, it is demonstrated that a bandwidth of 90% absorption can be extended up to 100% of the central frequency with only one layer of patterned graphene  

    Ultra-Sharp Transmission Resonances in Periodic Arrays of Graphene Ribbons in TE Polarization

    , Article Journal of Lightwave Technology ; Volume 34, Issue 3 , 2016 , Pages 1020-1024 ; 07338724 (ISSN) Khavasi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    When illuminated by TM polarized waves, periodic arrays of graphene ribbons are known to exhibit plasmonic resonances due to their dual inductive-capacitive nature. It is demonstrated here that even in TE polarization, resonances can be observed in these structure. These resonances, which are of nonplasmonic origin, are explained by means of a circuit model. It is shown that, for a certain frequency range, arrays of graphene ribbons have both capacitive and inductive properties, which lead to an ultra-sharp inductor-capacitor resonance. The banw idth of this resonance can be as narrow as ∼0.0002 nm at a wavelength of 630 nm. The resonance can also be viewed as the grating excitation of a TE... 

    Low-cost three-dimensional millimeter-wave holographic imaging system based on a frequency-scanning antenna

    , Article Applied Optics ; Volume 57, Issue 1 , 2018 , Pages A65-A75 ; 1559128X (ISSN) Nili, V. A ; Mansouri, E ; Kavehvash, Z ; Fakharzadeh, M ; Shabany, M ; Khavasi, A ; Sharif University of Technology
    OSA - The Optical Society  2018
    Abstract
    In this paper, a closed-form two-dimensional reconstruction technique for hybrid frequency and mechanical scanning millimeter-wave (MMW) imaging systems is proposed. Although being commercially implemented in many imaging systems as a low-cost real-time solution, the results of frequency scanning systems have been reconstructed numerically or have been reported as the captured raw data with no clear details. Furthermore, this paper proposes a new framework to utilize the captured data of different frequencies for three-dimensional (3D) reconstruction based on novel proposed closed-form relations. The hybrid frequency and mechanical scanning structure, together with the proposed... 

    Analytical modeling of graphene ribbons as optical circuit elements

    , Article IEEE Journal of Quantum Electronics ; Vol. 50, issue. 6 , 2014 , pp. 397-403 ; ISSN: 00189197 Khavasi, A ; Rejaei, B ; Sharif University of Technology
    2014
    Abstract
    We demonstrate that graphene ribbons can be modeled as circuit elements, which have dual capacitive-inductive nature. In the subwavelength regime, the surface current density on a single graphene ribbon subject to an incident p-polarized plane wave is derived analytically and then it is extended to coplanar arrays of graphene ribbons by applying perturbation theory. It is demonstrated that even isolated graphene ribbons have capacitive properties and the interaction between them in an array only changes the capacitance. Finally, we propose an accurate circuit model for the ribbon array by applying appropriate boundary conditions  

    Regularization of jump points in applying the adaptive spatial resolution technique

    , Article Optics Communications ; Volume 284, Issue 13 , June , 2011 , Pages 3211-3215 ; 00304018 (ISSN) Khavasi, A ; Mehrany, K ; Sharif University of Technology
    2011
    Abstract
    The performance of the adaptive spatial resolution technique is improved by making the resolution function of the coordinate transformation as smooth as possible. To this end, the smoothness of the resolution function is probed and a quantitative criterion is proposed to make the jump points; which were conventionally equidistant from each other, regularized. The here-proposed regularization is applied to two different recent formulations and its effects on the overall convergence rate and on the presence of numerical artifacts in analysis of highly conducting gratings are studied. Dielectric and metallic gratings at optical and microwave frequencies are considered and the helpfulness of the... 

    Circuit model for lamellar metallic gratings in the sub-wavelength regime

    , Article IEEE Journal of Quantum Electronics ; Volume 47, Issue 10 , Oct , 2011 , Pages 1330-1335 ; 00189197 (ISSN) Khavasi, A ; Mehrany, K ; Sharif University of Technology
    2011
    Abstract
    A circuit model is proposed for periodic 1-D array of metallic strips in the sub-wavelength regime. The parameters of the proposed circuit and their dependence on frequency are all explicitly given by closed form expressions. The necessity of using numerical simulation to extract model parameters is thus sidestepped. It is demonstrated that the proposed model is valid at different incident angles and for arbitrary surrounding mediums given that there is only one propagating diffracted order outside the grating and only one guided mode supported by the slits. Both major polarizations are studied in this paper  

    Transmission line model for one-dimensional metallic grating in TE polarization

    , Article 2010 International Conference on Photonics, ICP2010, 5 July 2010 through 7 July 2010 ; July , 2010 ; 9781424471874 (ISBN) Khavasi, A ; Mehrany, K ; Sharif University of Technology
    2010
    Abstract
    A simple transmission line model is presented to emulate field behavior in a one dimensional metallic grating in TE polarization. The proposed model is based on the fact that pairs of adjacent metallic strips in the structure act as a parallel plate waveguide supporting TE guided modes for low enough frequencies. The effect of fringing fields is also included and a very good approximate model is obtained to simulate metallic gratings in TE polarization  

    Artifact-free analysis of highly conducting binary gratings by using the legendre polynomial expansion method

    , Article Journal of the Optical Society of America A: Optics and Image Science, and Vision ; Volume 26, Issue 6 , 2009 , Pages 1467-1471 ; 10847529 (ISSN) Khavasi, A ; Mehrany, K ; Sharif University of Technology
    OSA - The Optical Society  2009
    Abstract
    Analysis of highly conducting binary gratings in TM polarization has been problematic as the Fourier factorization fails and thus unwanted numerical artifacts appear. The Legendre polynomial expansion method (LPEM) is employed here, and the erroneous harsh variations attributed to the violation of the inverse rule validity in applying the Fourier factorization are filtered out. In this fashion, stable and artifact-free numerical results are obtained. The observed phenomenon is clearly demonstrated via several numerical examples and is explained by inspecting the transverse electromagnetic field profile. © 2009 Optical Society of America  

    Adaptive spatial resolution in fast, efficient, and stable analysis of metallic lamellar gratings at microwave frequencies

    , Article IEEE Transactions on Antennas and Propagation ; Volume 57, Issue 4 PART 2 , 2009 , Pages 1115-1121 ; 0018926X (ISSN) Khavasi, A ; Mehrany, K ; Sharif University of Technology
    2009
    Abstract
    The technique of adaptive spatial resolution is for the first time applied in fast and efficient Fourier-based analysis of metallic lamellar gratings at microwave frequencies. Inasmuch as the ultrahigh-contrast permittivity profile of these structures is likely to incur numerical instabilities, the continuity condition is heedfully imposed on the transverse electromagnetic fields and an elegant, unconditionally stable matrix-based strategy is proposed to rigorously analyze the microwave transmission of these structures. © 2009 IEEE  

    Experimental study on the interfacial instability of particle-laden stratified shear flows

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 40, Issue 4 , April , 2018 ; 16785878 (ISSN) Khavasi, E ; Firoozabadi, B ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Turbidity currents are one of the more frequently observed types of stratified flows. In these currents, the density difference is created as a result of suspended particles. The interfacial instability of turbidity current is studied experimentally in the present research. Both Kelvin–Helmholtz and (asymmetric) Holmboe instabilities are observed during the experiments; the first one was downstream, and the second one was upstream of the obstacle. Kelvin–Helmholtz instability is observed by approximately zero (phase) speed with respect to the mean flow. With the aim of measuring spectral distribution of velocity fluctuations, the effects of some parameters are studied on interfacial waves;... 

    Linear spatial stability analysis of particle-laden stratified shear layers

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 41, Issue 6 , 2019 ; 16785878 (ISSN) Khavasi, E ; Firoozabadi, B ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    Hydrodynamic instabilities at the interface of stratified shear layers could occur in various modes. These instabilities have an important role in the mixing process. In this work, the linear stability analysis in spatial framework is used to study the stability characteristics of a particle-laden stratified two-layer flow. The effect of parameters such as velocity-to-density thickness ratio, bed slope, viscosity as well as particle size on the stability is considered. A simple iterative method applying the pseudospectral collocation method that employed Chebyshev polynomials is used to solve two coupled eigenvalue equations. Based on the results, the flow becomes stable for Richardson... 

    Experimental Study on Deposition Behavior of Turbidity Current

    , M.Sc. Thesis Sharif University of Technology Khavasi, Ehsan (Author) ; Firoozabadi, Bahar (Supervisor)
    Abstract
    Density currents are occurred as a result of the intrusion of a dense fluid into a fluid with a different density. Density difference is the main agent of current’s movement. These currents are observed in nature numerously and they are one of the main reasons of the erosion and transportation of deposition in oceans, seas and rivers. Investigation of these currents is of great importance especially in dams’ reservoir as major cause of deposition and reduction of reservoir’s efficency. Density differences are typically caused by the difference in temperature, existence of solution or insoluble material and suspended solids. In this work, density current is studied experimentally. Density... 

    Transmission-Line Models for Approximate Analysis of Electromagnetic Periodic Structures

    , Ph.D. Dissertation Sharif University of Technology Khavasi, Amin (Author) ; Mehrany, Khashayar (Supervisor)
    Abstract
    Full numerical methods are usually used for the analysis of periodic structures such as photonic crystals and diffraction gratings. The main drawback of these methods is that they are time-consuming and thus are not appropriate for the design process. In this thesis, approximate and fast methods, based on transmission line models, for the analysis of periodic structures are proposed. To this end, in the first part of the thesis, we investigate one-dimensionally periodic metallic gratings. Longitudinally homogenous metallic gratings, enhanced reflection phenomenon and longitudinally inhomogenous metallic gratings are examined, and simple, and efficient transmission line models for these cases... 

    Modeling and Control of Line Waves on Metasurfaces

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Hadi (Author) ; Khavasi, Amin (Supervisor)
    Abstract
    This thesis examines a new electromagnetic mode called line mode. This mode occurs when the boundaries have complementary surface impedances. It is possible to control the mode confinement by changing the surface impedance values. Impedance surfaces with non-complementary impedances guides the quasi-line mode, which is a mode between the line mode and the edge mode. Essential features of the line wave are its singularity over the line, its broad bandwidth, and its robustness to certain defects. Another significant characteristic of a line wave is that unlike surface waves in which it is not possible to change the spin orientation, in a line wave, the spin orientation can be altered by... 

    Numerical Electromagnetic Simulation of Millimeter Wave Imaging System and Comparison to Experimental Results

    , M.Sc. Thesis Sharif University of Technology Sadr, Fatemeh (Author) ; Khavasi, Amin (Supervisor)
    Abstract
    Millimeter wave imaging systems have unique features and have been used extensively in a variety of applications including medical imaging, construction operations, places with high security such as airports, Nondestructive testing and etc. These systems provide high resolution, due to the order of wavelength which is several millimeter or centimeter in this band. Also in places with high security and for detecting the concealed objects under people’s clothing, these waves can easily pass through the materials and investigate the person’s body without causing health problems. A wide variety of these imaging systems , each with different design parameters and resolutions, have been proposed....