Loading...
Search for:
khezri--khashayar
0.152 seconds
Total 85 records
A neuro-fuzzy inference system for sEMG-based identification of hand motion commands
, Article IEEE Transactions on Industrial Electronics ; Volume 58, Issue 5 , 2011 , Pages 1952-1960 ; 02780046 (ISSN) ; Jahed, M ; Sharif University of Technology
2011
Abstract
Surface electromyogram (sEMG) signals, a noninvasive bioelectric signal, can be used for the rehabilitation and control of artificial extremities. Current sEMG pattern-recognition systems suffer from a limited number of patterns that are frequently intensified by the unsuitable accuracy of the instrumentation and analytical system. To solve these problems, we designed a multistep-based sEMG pattern-recognition system where, in each step, a stronger more capable relevant technique with a noticeable improved performance is employed. In this paper, we utilized the sEMG signals to classify and recognize six classes of hand movements. We employed an adaptive neurofuzzy inference system (ANFIS) to...
An exploratory study to design a novel hand movement identification system
, Article Computers in Biology and Medicine ; Volume 39, Issue 5 , 2009 , Pages 433-442 ; 00104825 (ISSN) ; Jahed, M ; Sharif University of Technology
2009
Abstract
Electromyogram signal (EMG) is an electrical manifestation of contractions of muscles. Surface EMG (sEMG) signal collected from the surface of skin has been used in diverse applications. One of its usages is in pattern recognition of hand prosthesis movements. The ability of current prosthesis devices has been generally limited to simple opening and closing tasks, minimizing their efficacy compared to natural hand capabilities. In order to extend the abilities and accuracy of prosthesis arm movements and performance, a novel sEMG pattern recognizing system is proposed. To extract more pertinent information we extracted sEMGs for selected hand movements. These features constitute our main...
Real-time intelligent pattern recognition algorithm for surface EMG signals
, Article BioMedical Engineering Online ; Volume 6 , 3 December , 2007 ; 1475925X (ISSN) ; Jahed, M ; Sharif University of Technology
2007
Abstract
Background: Electromyography (EMG) is the study of muscle function through the inquiry of electrical signals that the muscles emanate. EMG signals collected from the surface of the skin (Surface Electromyogram: sEMG) can be used in different applications such as recognizing musculoskeletal neural based patterns intercepted for hand prosthesis movements. Current systems designed for controlling the prosthetic hands either have limited functions or can only be used to perform simple movements or use excessive amount of electrodes in order to achieve acceptable results. In an attempt to overcome these problems we have proposed an intelligent system to recognize hand movements and have provided...
Introducing a new multi-wavelet function suitable for sEMG signal to identify hand motion commands
, Article 29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society, EMBC'07, Lyon, 23 August 2007 through 26 August 2007 ; 2007 , Pages 1924-1927 ; 05891019 (ISSN) ; 1424407885 (ISBN); 9781424407880 (ISBN) ; Jahed, M ; Sharif University of Technology
2007
Abstract
In recent years, electromyogram signal (EMG) feature selection, based on wavelet transform, has received considerable attention. This study introduces a new multiwavelet function for surface EMG (sEMG) signal intended for tasks that involve hand movement recognition. To create the new wavelet function, several types of well known mother wavelet were exploited and through their integration the proposed mother wavelet was generated. The proposed wavelet function closely reproduced the characteristics of the EMG signal, while increasing the recognition accuracy of hand movements. We used eight unique classes of hand motions and considered the ability of various mother wavelets and the proposed...
A novel approach to recognize hand movements via sEMG patterns
, Article 29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society, EMBC'07, Lyon, 23 August 2007 through 26 August 2007 ; 2007 , Pages 4907-4910 ; 05891019 (ISSN) ; 1424407885 (ISBN); 9781424407880 (ISBN) ; Jahed, M ; Sharif University of Technology
2007
Abstract
Electromyogram signal (EMG) is an electrical manifestation of contractions of muscles. Surface EMG (sEMG) signal collected form surface of the skin has been used in diverse applications. One of its usages is exploiting it in a pattern recognition system which evaluates and synthesizes hand prosthesis movements. The ability of current prosthesis has been limited in simple opening and closing that decreases the efficacy of these devices in contrary to natural hand. In order to extend the ability and accuracy of prosthesis arm movements and performance, a novel approach for sEMG pattern recognizing system is proposed. In order to have a relevant comparison, present and recent research for...
Surface Electromyogram signal estimation based on wavelet thresholding technique
, Article 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08, Vancouver, BC, 20 August 2008 through 25 August 2008 ; 2008 , Pages 4752-4755 ; 9781424418152 (ISBN) ; Jahed, M ; Sharif University of Technology
IEEE Computer Society
2008
Abstract
Surface Electromyogram signal collected from the surface of skin is a biopotential signal that may be influenced by different types of noise. This is a considerable drawback in the processing of the sEMG signals. To acquire the clean sEMG that contains useful information, we need to detect and eliminate these unwanted parts of signal. In this work, a new method based on wavelet thresholding technique is presented which provides an acceptable purified sEMG signal. sEMG signals for this study are extracted for various hand movements. We use three hand movements to calculate the near optimal estimation parameters. In this work two types of thresholding techniques, namely Stein unbiased risk...
An inventive quadratic time-frequency scheme based on Wigner-Ville distribution for classification of sEMG signals
, Article 6th International Special Topic Conference on ITAB, 2007, Tokyo, 8 November 2007 through 11 November 2007 ; 2007 , Pages 261-264 ; 9781424418688 (ISBN) ; Jahed, M ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2007
Abstract
Electromyogram signal is a biopotential signal that may be measured on the surface of contracting muscles representing neuromuscular activities. This signal may be utilized in various applications such as clinical diagnosis of diseased neuromuscular systems and as a measurement tool for evaluation of rehabilitation activities. Another recent application is the usage of EMG signal in design and implementation of neural controlled prosthesis hands. For this purpose appropriate features of EMG signal are required such that intended hand movements may be recognized correctly. In this work we considered a new method based on quadratic time-frequency representation namely Wigner-Ville distribution...
Microstructural Study, Anisotropic Behavior, and Mechanical Properties of AA3104 Aluminum Sheets for Beverage Can Manufacturing in the Deep Drawing Process
, M.Sc. Thesis Sharif University of Technology ; Akbarzadeh, Abbas (Supervisor)
Abstract
Aluminum alloys, due to their high strength-to-weight ratio and excellent corrosion resistance, are considered as an alternative to steel sheets in various industries. The high demand for aluminum alloys in this competitive market forces aluminum sheet manufacturers to thoroughly analyze their production processes in terms of both cost and final material properties, aiming to improve quality and reduce production costs through innovation. One of the most important applications of aluminum alloys is in beverage can manufacturing, where aluminum alloy 3104 is commonly used. These cans are primarily produced using the deep drawing method. The microstructure and texture anisotropy play a key...
Neuro-fuzzy surface EMG pattern recognition for multifunctional hand prosthesis control
, Article 2007 IEEE International Symposium on Industrial Electronics, ISIE 2007, Caixanova - Vigo, 4 June 2007 through 7 June 2007 ; 2007 , Pages 269-274 ; 1424407559 (ISBN); 9781424407552 (ISBN) ; Jahed, M ; Sadati, N ; Sharif University of Technology
2007
Abstract
Electromyogram (EMG) signal is an electrical manifestation of muscle contractions. EMG signal collected from surface of the skin, a non-invasive bioelectric signal, can be used in different rehabilitation applications and artificial extremities control. This study has proposed to utilize the surface EMG (SEMG) signal to recognize patterns of hand prosthesis movements. It suggests using an adaptive neuro-fuzzy inference system (ANFIS) to identify motion commands for the control of a prosthetic hand. In this work a hybrid method for training fuzzy system, consisting of back-propagation (BP) and least mean square (LMS) is utilized. Also in order to optimize the number of fuzzy rules, a...
Modeling Material Discontinuities Via An Augmented RKPM and Performance of GRKPM in Fracture Mechanics
, M.Sc. Thesis Sharif University of Technology ; Mohammadi Shodja, Hossein (Supervisor)
Abstract
During the past decade, element free methods have achieved great successes. One of these methods is the so called RKPM which has a suitable structure for use in fracture mechanics problems. Despite all characteristic abilities of element free methods; these methods due to their higher order continuous differentiable approximations fail to model discontinuous material properties of the subjected domains. In this study by improving the collocation method in RKPM treatment of such conditions have been achieved. Also in this study performance of a new meshfree method in fracture mechanics problems has been analyzed. GRKPM is one of these methods which its suitable accuracy and convergence has...
Investigation the Distribution Pattern and Life-Time Duration of Dense Non-Aqueous Phase Liquids (DNAPL) in Heterogeneous Porous Media (Fractured Media)
, M.Sc. Thesis Sharif University of Technology ; Ataie Ashtiani, Behzad (Supervisor)
Abstract
Dense non-aqueous phase liquid accounts for a large share of groundwater pollution. In oil-rich countries, including Iran, the emission of this type of pollutant is mainly through leakage from concrete and steel tanks belonging to refineries and gas stations. The dissolution of these pollutants in groundwater and the vapor intrusion into residential homes increased the importance of developing efficient treatment methods. To choose the best method, it is necessary to gain sufficient knowledge of how these types of contaminants are distributed in the subsurface and how contaminants change and move over time. Heterogeneity, especially in the form of fracture, is one of the challenges to...
A unified approach to the mathematical analysis of generalized RKPM, gradient RKPM, and GMLS
, Article Computer Methods in Applied Mechanics and Engineering ; Volume 200, Issue 5-8 , January , 2011 , Pages 540-576 ; 00457825 (ISSN) ; Shodja, H. M ; Khezri, M ; Sharif University of Technology
2011
Abstract
It is well-known that the conventional reproducing kernel particle method (RKPM) is unfavorable when dealing with the derivative type essential boundary conditions [1-3]. To remedy this issue a group of meshless methods in which the derivatives of a function can be incorporated in the formulation of the corresponding interpolation operator will be discussed. Formulation of generalized moving least squares (GMLS) on a domain and GMLS on a finite set of points will be presented. The generalized RKPM will be introduced as the discretized form of GMLS on a domain. Another method that helps to deal with derivative type essential boundary conditions is the gradient RKPM which incorporates the...
Transmission-Line Models for Approximate Analysis of Electromagnetic Periodic Structures
,
Ph.D. Dissertation
Sharif University of Technology
;
Mehrany, Khashayar
(Supervisor)
Abstract
Full numerical methods are usually used for the analysis of periodic structures such as photonic crystals and diffraction gratings. The main drawback of these methods is that they are time-consuming and thus are not appropriate for the design process. In this thesis, approximate and fast methods, based on transmission line models, for the analysis of periodic structures are proposed. To this end, in the first part of the thesis, we investigate one-dimensionally periodic metallic gratings. Longitudinally homogenous metallic gratings, enhanced reflection phenomenon and longitudinally inhomogenous metallic gratings are examined, and simple, and efficient transmission line models for these cases...
Microwave Inspired Easy-to-Design Nano-Couplers for Hybrid Photonic-Plasmonic Waveguide Structures
, M.Sc. Thesis Sharif University of Technology ; Mehrany, Khashayar (Supervisor)
Abstract
Potential of plasmonic waveguide structures to confine light in sub-wavelength scales attracted many attentions in recent years. Among these structures planar metal-insulator-metal waveguide and plasmonic slot waveguide are more promising. That is because of their easy fabrication process along with their various reported applications. However, there are some obstacles in the path of developing plasmonic integrated circuits, among whichhigh propagation loss can be named as the most important. To solve this issue, photonic waveguides can be used as the lossless interconnections between small footprint plasmonic components on optical chips. Therefore, application of plasmonic slot waveguide...
Multi-Conductor Transmission Line Models for Analysis of Metal-Dielectric -Metal Nanoplasmonic Structures
, M.Sc. Thesis Sharif University of Technology ; Mehrany, Khashayar (Supervisor)
Abstract
The existing transmission line models of plasmonic nanostructures are modified in this thesis to study the electromagnetic characteristics of nano-plasmonic structures in a more efficeint yet accurate enough fashion. First, rectangular plasmonic cavities made by carving dielectric rectangles within a metallic region are modeled by trasnmission lines of finite length being appropriately terminated at their both ends. The resonance conditon in the proposed model yeilds the resonance frequencies, quality factors, and mode profiles of its correspondig plasmonic resonator. The accuracy of the proposed model is assessed by using the fully numerical finite-difference time-domain method (FDTD)...
Rigorous Calculation of Guided Modes in Photonic Crystal Waveguides and Contriving Homogenized Models
, M.Sc. Thesis Sharif University of Technology ; Mehrany, Khashayar (Supervisor)
Abstract
In this thesis an approximate method is proposed for analysis of two dimensional photonic crystal waveguides. In this method an equivalent impedance is assigned to photonic crystal regions and the waveguide region is modeled with a transmission line. Waveguide’s loss is also analysed and computed by this method. In other words the proposed method is able to determine the complex propagation constant of guided modes without computing any complex roots for dispersion equation. Although like any other approximate method, the accuracy of this method is dependent to some special conditions but it’s advantage over other numerical methods is its simplicity and its capability for waveguide designs....
Distributed Circuit Modeling of Plasmonic Nanostructures
, M.Sc. Thesis Sharif University of Technology ; Mehrany, Khashayar (Supervisor)
Abstract
The existing transmission line models of plasmonic nanostructures are modified in this thesis to study the electromagnetic characteristics of nano-plasmonic structures in a more efficeint yet accurate enough fashion. First, rectangular plasmonic cavities made by carving dielectric rectangles within a metallic region are modeled by trasnmission lines of finite length being appropriately terminated at their both ends. The resonance conditon in the proposed model yeilds the resonance frequencies, quality factors, and mode profiles of its correspondig plasmonic resonator. The accuracy of the proposed model is assessed by using the fully numerical finite-difference time-domain method (FDTD)...
Analysis and Design of the Dielectric Resonators Using Differential Transfer Matrix Method (DTMM) in the Cylindrical Coordinate
, M.Sc. Thesis Sharif University of Technology ; Mehrany, Khashayar (Supervisor)
Abstract
Ring and disk resonator are studied in this thesis. First, the complex resonance frequencies of two-dimensional homogeneous ring and disk resonators are extracted by following the standard approach and then a novel method is proposed to extract the complex eigen-frequencies of two-dimensional inhomogeneous ring and disk resonators. The inhomogeneity of the refractive index is arbitrary along the radial direction. The proposed method is shown to be more efficient than the standard approach based on the stair-case approximation. It is therefore appropriate for resonator design and is thus employed for systematic study of the opposing trends of geometrical parameters in maximization of...
Optical Circuits Made of Spoof Plasmonic Structures with Wide-Band Transmission Resonance and the Impact of Fano Resonance
, M.Sc. Thesis Sharif University of Technology ; Mehrany, Khashayar (Supervisor)
Abstract
Due to the growing need for plasmonic wavs in microwave and terahertz spectra, a periodic arrangement of one-dimensional cut-through slits is investigated and an equivalent model based on the effective medium theory is derived. In contrast to the all previous attempts that were successful in mimicking only the zeroth-order diffracted waves, the proposed effective medium is capable of mimicking all diffraction orders. The parameters of the equivalent model are established by comparing the scattered waves of the semi-homogeneous medium and those of the main structure obtained by invoking the rigorous mode matching approach based on the single mode approximation inside the slits. This medium is...
Analysis of PlasMOStor in CMOS Compatible Plasmonic Circuits
, M.Sc. Thesis Sharif University of Technology ; Mehrany, Khashayar (Supervisor)
Abstract
Thus far numerous components and devices have been designed and realized based on plasmonics. Hereon, we focus on PlasMOStor which is probably the first and most important CMOS compatible plasmonic modulator. It resembles to its electronic counterpart MOS transistor in geometry, unless, it has a plasmonic waveguide instead of the regular channel to modulate optical signals . By applying voltage to the gate and inset of charge carrier accumulation, optical properties of the channel changes and plasMOStor turns off. In this thesis, we carry out a through investigation of plasMOStor’s operation. We show that the proposed theoretical description of plasMOStor is fallacious. Subsequently,...