Loading...
Search for:
khodabakhsh--f
0.101 seconds
Total 3985 records
Multi-objective genetic algorithm for hover stabilization of an insect-like flapping wing
, Article Applied Mechanics and Materials ; Volume 332 , 2013 , Pages 50-55 ; 16609336 (ISSN) ; 9783037857335 (ISBN) ; Banazadeh, A ; Sharif University of Technology
2013
Abstract
This paper describes latest results obtained on modeling, simulation and controller design of an insect-like Flapping Wing Micro Air Vehicle (FWMAV). Because of the highly nonlinear and time varying nature of insect flight and the inability to find an equilibrium point, linearization of the model without compromising the accuracy is not possible. Therefore, to address the problem of designing a controller capable of stabilizing and controlling the FWMAV around a hovering point, a metaheuristic optimization approach is proposed, based on the time averaging theorem. The results show that a controller, designed using the proposed method, is capable of stabilizing the FWMAV effectively around...
Control of Locomotion in a Two-Leg Robot with Uncertain Frictional Effects
, M.Sc. Thesis Sharif University of Technology ; Vosoughi, Golamreza (Supervisor)
Abstract
Microrobots design and manufacturing has been one of interesting fields in robotics in recent decades. They have been designed in various types so far. In this paper a two-leg microrobot is simulated and controlled by using LuGre friction model.
The proposed microrobot is driven by a piezoelectric actuator mounted between centers of two legs. The piezoelectric is actuated by a frequency near the natural frequency of the robot. The nonlinear dynamical equations of the system are obtained considering LuGre friction model. To control the system, the equations of motion are linearized using feedback linearization method. Then a stabilizing control law is designed and the robot model is...
The proposed microrobot is driven by a piezoelectric actuator mounted between centers of two legs. The piezoelectric is actuated by a frequency near the natural frequency of the robot. The nonlinear dynamical equations of the system are obtained considering LuGre friction model. To control the system, the equations of motion are linearized using feedback linearization method. Then a stabilizing control law is designed and the robot model is...
Removing undesired effects of mass/inertia on transparency using artificial neural networks in a haptic mechanism
, Article ICCAS 2010 - International Conference on Control, Automation and Systems, 27 October 2010 through 30 October 2010, Gyeonggi-do ; 2010 , Pages 156-161 ; 9781424474530 (ISBN) ; Boroushaki, M ; Vossoughi, G ; Sharif University of Technology
2010
Abstract
In this paper, Artificial Neural Networks (ANN) has been used to identify the dynamics of robots used in haptic and master slave devices in order to improve transparency. In haptic and master slave devices, transparency depends on some factors such as robot's mass and inertia, gravitational forces and friction [1]. In such systems, mass and inertia of the robot has an undesirable effect on the system outputs, which should be neutralized for improved transparency. The main purpose of this paper introducting a method to neutralize the undesirable effects of mass and inertia of the robot. A recurrent multilayer perceptron (RMLP) is used in a way that the inputs and outputs of the neural network...
Reliability-based Multidisciplinary Design Optimization of an Aeroelastic Projectile
, M.Sc. Thesis Sharif University of Technology ; Pourtakdoust, Hossein (Supervisor)
Abstract
In this research, Reliability-Based Multidisciplinary Design Optimization has been addressed. For this purpose, the main concepts in reliability-based design are investigated and the design methods based on reliability are explained. Providing a unified formulation to implement the optimal design structure based on the reliability, is the second part of this research. It has been intended to present a suitable structure for the design process considering the existing formulas and considering the numerical solutions. An aeroelastic projectile has been chosen as the target system for implementing the proposed process in the present study. The third section of this document has been dedicated...
Development of a Smart Learning-Based Distributed Load Alleviation System for Future Generation of Aeroelastic Wings
, Ph.D. Dissertation Sharif University of Technology ; Pourtakdoust, Hossein (Supervisor)
Abstract
In the pursuit of designing next-generation aircraft, several key challenges such as emission reduction, environmental compatibility, and energy consumption optimization are paramount. These challenges are addressed simultaneously in a multi-objective optimal design process, often leading to the emergence of innovative architectures. These architectures aim to enhance aerodynamic efficiency, extend range, minimize fuel consumption, and consequently, reduce aircraft emissions. One of the pivotal factors in augmenting the overall efficiency of an aircraft is the reduction in weight and thinning of the wings. This reduction in mass increases the slenderness ratio and leads to structures with...
Modeling of a planar microrobot using lugre friction model
, Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010 ; Volume 8, Issue PARTS A AND B , November , 2010 , Pages 633-639 ; 9780791844458 (ISBN) ; Vossoughi, G. R ; Kamali, A ; Sharif University of Technology
2010
Abstract
Microrobots design and manufacturing has been one of interesting fields in robotics in recent years. Various legged designs have been proposed in the literature. All designs rely on friction for locomotion. In this paper the dynamic model of a planar two-legged microrobot is presented using LuGre friction model. LuGre friction model is more realistic model, reducing uncertainties of the microrobot dynamic model, providing a better prediction for both design and control applications. The proposed microrobot is driven by a piezoelectric actuator mounted between centers of two legs. One of important issues in modeling of microrobots is to determine the friction force between robot and...
Modeling and Flight Controller Design of an Insect-Like Flapping Wing in Hover
, M.Sc. Thesis Sharif University of Technology ; Banazadeh, Afshin (Supervisor)
Abstract
There are many applications for micro aerial vehicles (MAV) and in nature they are flying as birds and insects. It can be said that a MAV that can mimic flying capabilities of birds and insects can be used as a solution for flying in low Reynolds number regimes. It seems that Flapping Wing MAVs have better performance than fixed and rotary wings MAV in low Reynolds number regimes. So far there haven’t been many theories and methods introduced for controlling flapping wing MAVs and many researches failed to provide a convenient way for designing an effective controller. On the other hand, models presented in literature for aerodynamics, dynamics and kinematics of flapping wing are not...
Estimation of Brain Connectivity Via Deep Neural Network
, M.Sc. Thesis Sharif University of Technology ; Shamsollahi, Mohammad Bagher (Supervisor)
Abstract
The human brain is one of the most complex and least understood systems in nature. In recent decades, numerous studies have been conducted to identify the behavior of this system. One of the areas of brain research is the investigation of the connections between different regions of the brain during a presumed process or in a resting state. Among various types of brain connections, effective connectivity provides researchers with higher-level information on brain behavior compared to other connections, but also entails greater computational complexity. In recent years, researchers have aimed to provide an estimator with the maximum desirable capabilities, and with the advent of (deep) neural...
Kinematics and force analysis of a 6 degrees of freedom 3-UPS mechanism with triangular platform for haptic applications
, Article International Conference on Control, Automation and Systems ; 2012 , Pages 694-698 ; 15987833 (ISSN) ; 9781467322478 (ISBN) ; Sadeghpour, M ; Hassanpour, S ; Vossoughi, G ; Sharif University of Technology
2012
Abstract
This paper presents inverse dynamics equations for a 3-UPS mechanism using virtual work principle. This mechanism has three UPS legs connecting the base to a triangular platform. By changing the orientation of leg's actuators a non-symmetric mechanism with a suitable workspace near the origin without any singularity is obtained. Direct and inverse kinematics Jacobian matrices of the mechanism are obtained by the Newton-Euler approach. Then the inverse dynamics problem is solved using the principle of virtual work, so that the force and torque of active actuators have been obtained by having external forces (force and torque) acted on the platform. Force analysis of the 3-UPS mechanism has...
Development of a novel nano-sized anti-VEGFA nanobody with enhanced physicochemical and pharmacokinetic properties
, Article Artificial Cells, Nanomedicine and Biotechnology ; Volume 46, Issue 7 , 2018 , Pages 1402-1414 ; 21691401 (ISSN) ; Norouzian, D ; Vaziri, B ; Ahangari Cohan, R ; Sardari, S ; Mahboudi, F ; Behdani, M ; Mansouri, K ; Mehdizadeh, A ; Sharif University of Technology
2018
Abstract
Since physiological and pathological processes occur at nano-environments, nanotechnology has considered as an efficient tool for designing of next generation specific biomolecules with enhanced pharmacodynamic and pharmacodynamic properties. In the current investigation, by control of the size and hydrodynamic volume at the nanoscale, for the first time, physicochemical and pharmacokinetic properties of an anti-VEGFA nanobody was remarkably improved by attachment of a Proline-Alanine-Serine (PAS) rich sequence. The results elucidated unexpected impressive effects of PAS sequence on physicochemical properties especially on size, hydrodynamics radius, and even solubility of nanobody. CD...
Development of a novel nano-sized anti-VEGFA nanobody with enhanced physicochemical and pharmacokinetic properties
, Article Artificial Cells, Nanomedicine and Biotechnology ; 2017 , Pages 1-13 ; 21691401 (ISSN) ; Norouzian, D ; Vaziri, B ; Ahangari Cohan, R ; Sardari, S ; Mahboudi, F ; Behdani, M ; Mansouri, K ; Mehdizadeh, A ; Sharif University of Technology
2017
Abstract
Since physiological and pathological processes occur at nano-environments, nanotechnology has considered as an efficient tool for designing of next generation specific biomolecules with enhanced pharmacodynamic and pharmacodynamic properties. In the current investigation, by control of the size and hydrodynamic volume at the nanoscale, for the first time, physicochemical and pharmacokinetic properties of an anti-VEGFA nanobody was remarkably improved by attachment of a Proline-Alanine-Serine (PAS) rich sequence. The results elucidated unexpected impressive effects of PAS sequence on physicochemical properties especially on size, hydrodynamics radius, and even solubility of nanobody. CD...
Experimental and computer based simulation study of WAG process
, Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) ; Kharrat, R ; Ghazanfari, M. H ; Khodabakhsh, M ; Sharif University of Technology
2006
Abstract
In reservoirs that have been water flooded or gas injected, it is still a significant amount of the remaining oil. Water alternative gas injection is a tertiary oil recovery method which was used for the first time in Canada for recovering remained oil in place of reservoir. The pore-scale mechanisms of this process are not fully understood yet. Such knowledge is essential for accurate modelling of reservoir. In this study various experiments on the WAG process is carried out by means of high pressure glass type micromodel instrument. The micromodel apparatus in this experiment was capable to operate at pressures up to 3500 Psi and temperatures up to 85°C which is similar to conventional...
Comparison of Mechanical Properties of Al-TiB2 Composite in as Cast, Heat Treated and Extruded Condition
, M.Sc. Thesis Sharif University of Technology ; Varahram, Naser (Supervisor) ; Davami, Parviz (Supervisor)
Abstract
This research focused on mechanical properties of Al-TiB2 composite in as cast, heat treated and extruded condition. The composites were produced by mixing Al-Ti and Al-B master alloyes. Since some engineering parts during service are supposed to tolerate severe wear conditions, in this research abrasive wear condition was wxamined using pin on disk method. In a fixed load and abrasive disk, composites showed better resistance against wear in comparison with matrix alloy. Furtheremore, T6 heat treatment made composites more resistant against abrasive wear. Finally the best wear resistance was accompolished when composite was extruded and then heat treated. While increase in reinforcement...
Relative permeability estimation of porous media: Comparison of implicit and explicit approaches
, Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) ; Rashtchian, D ; Kharrat, R ; Vossoughi, S ; Khodabakhsh, M ; Taheri, S ; Sharif University of Technology
2006
Abstract
Relative permeability is used to describe quantitatively simultaneous transport of two or more immiscible phases through a porous medium. Accurate estimates of relative permeability curves depend on the method of estimation and are desired to obtain reliable predictions of flow behavior. To compare the accuracy of relative permeability estimation of implicit and explicit methods, primary drainage experiments of water by a sample oil fluid have been studied. The experiments performed on a horizontal glass type micromodel as a model of porous media sample under different fixed high flow rates condition to negate capillary pressure effects. The relative permeability of oil and water phases is...
Capillary pressure estimation of porous media using statistical pore size function
, Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) ; Rashtchian, D ; Kharrat, R ; Vossoughi, S ; Khodabakhsh, M ; Taheri, S ; Sharif University of Technology
2006
Abstract
Real porous media even though seemingly homogenous and isotropic are most often nonuniform, and the nonuniformity may affect the macroscopic properties of porous media such as permeability, capillary pressure which is a result of the tortuous and circuitous nature of the flow paths in medium. In this study a glass type micromodel is considered as a porous media sample. A four parametric probability density function are used to express pore throat size, pore body size and pores length distributions which are measured using image analysis technique of porous model. The statistical models parameters are calculated by fitting the statistical model to the measured data of pore throat pore body...
Chrono-colorimetric sensor array for detection and discrimination of halide ions using an all-in-one plasmonic sensor element
, Article Talanta ; Volume 259 , 2023 ; 00399140 (ISSN) ; Abbasi Moayed, S ; Khodabakhsh, M ; Unal, U ; Hormozi Nezhad, M. R ; Sharif University of Technology
Elsevier B.V
2023
Abstract
Most nanoparticle based colorimetric sensor array utilize several sensor elements and static response for discrimination of target analytes. This approach can be complicated and costly to synthesize or functionalize different nanoparticles for providing wide color variation. Herein, triangular silver nanoparticles (TSNPs) were used to develop a colorimetric sensor array by time-dimension responses. The principle of this sensor array is based on the diverse etching process of TSNPs in the presence of three halide ions, including bromide (Br−), iodide (I−) and chloride (Cl−). Various etchings of TSNPs induced color changes at different reaction time intervals, which produced a colorimetric...
New proline, alanine, serine repeat sequence for pharmacokinetic enhancement of anti-vegf single-domain antibody
, Article Journal of Pharmacology and Experimental Therapeutics ; Volume 375, Issue 1 , July , 2020 , Pages 69-75 ; Salimian, M ; Mehdizadeh, A ; Khosravy, M. S ; Vafabakhsh, A ; Karami, E ; Cohan, R. A ; Sharif University of Technology
American Society for Pharmacology and Experimental Therapy
2020
Abstract
Therapeutic fragmented antibodies show a poor pharmacokinetic profile that leads to frequent high-dose administration. In the current study, for the first time, a novel proline, alanine, serine (PAS) repeat sequence called PAS#208 was designed to extend the plasma half-life of a nanosized anti-vascular endothelial growth factor-A single-domain antibody. Polyacrylamide gel electrophoresis, circular dichroism, dynamic light scattering, and electrophoretic light scattering were used to assess the physicochemical properties of the newly designed PAS sequence. The effect of PAS#208 on the biologic activity of a single-domain antibody was studied using an in vitro proliferation assay. The...
Effect of heating profile on desorption curve in temperature programmed desorption analysis: Case study of acid sites distribution of SAPO-34
, Article Journal of Porous Materials ; Volume 16, Issue 5 , 2009 , Pages 599-603 ; 13802224 (ISSN) ; Farhadi, F ; Khorasheh, F ; Yan, Z. F ; Sharif University of Technology
2009
Abstract
Comparison of the traditional linear heating method of TPD with an original stepwise heating scheme was reported for the first time. Stepwise heating TPD was carried out by keeping the temperature constant as soon as ammonia desorption signal rises until the signal returns to the baseline. More ammonia desorption peaks on a SAPO-34 catalyst were identified using TPD with stepwise heating. The effect of temperature ramp on desorption peak broadening in TPD curve was also addressed. The more distinct ammonia desorption peaks in stepwise TPD indicates that ammonia adsorbs in about five or six different ways on SAPO-34, and attribution of different adsorptions may be explained considering some...
Theoretical and experimental study of cascade solar stills
, Article Solar Energy ; Volume 90 , April , 2013 , Pages 205-211 ; 0038092X (ISSN) ; Sharak, A. Z ; Moghadam, H ; Tabrizi, F. F ; Sharif University of Technology
2013
Abstract
Most part of Iran is dominated by arid and semi-arid areas due to low annual rainfall. The need for production of fresh water from brackish water is considerably high, especially in dry regions. In this study 1 month daily-based experimental data from a solar still site has been reported. The technical and operational problems of this site which finally contributed to the total cease of the site are described. Then a detailed analysis is investigated on progress of a prototype which constructed in order to solve the site's problems. The results of 1 month of experimental data of the final design showed that the last prototype could be used to solve the current problems of the site. The...
Application of a continuous kinetic model for the hydrocracking of vacuum gas oil
, Article Petroleum Science and Technology ; Vol. 32, Issue. 18 , 2014 , Pages 2245-2252 ; ISSN: 10916466 ; Khorasheh, F ; Farhadi, F ; Sharif University of Technology
2014
Abstract
Hydrocracking is one of the most versatile petroleum refining processes for production of valuable products including gasoline, gas oil, and jet fuel. In this paper, a five-parameter continuous lumping model was used for kinetic modeling of hydrocracking of vacuum gas oil (VGO). The model parameters were estimated from industrial data obtained from a fixed bed reactor operating at an average temperature of 400°C and residence time of 0.3 h. Product distributions were obtained in terms of the weight fraction of various boiling point cuts. The model parameters were estimated using the Nelder-Mead optimization procedure and were correlated with temperature. Comparison of experimental and...