Loading...
Search for:
khoddam--m
0.297 seconds
Total 20429 records
A UHF micro-power CMOS rectifier using a novel diode connected CMOS transistor for micro-sensor and RFID applications
, Article International Conference on Electronic Devices, Systems, and Applications ; 2012 , Pages 234-238 ; 21592047 (ISSN) ; 9781467321631 (ISBN) ; Hamidon, M. N ; Khoddam, M ; Najafi, V ; Sharif University of Technology
2012
Abstract
The design strategy and efficiency optimization of UHF micro-power rectifiers using a novel diode connected MOS transistor is presented. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduce the threshold voltage and leakage current in compare to conventional diode connected transistors. Using the proposed diode in typical rectifiers makes a significant improvement in output voltage and current therefore the efficiency is increased comparing to the same rectifier architectures using conventional diodes. Also a design procedure for efficiency optimization is presented and a superposition method is used to optimize the performance of multiple output...
Selection of Simulation-Optimization Meta-Modeling Approach in Manufacturing Supply Chains
, M.Sc. Thesis Sharif University of Technology ; Ghasemi Tari, Farhad (Supervisor)
Abstract
This research presents a modified algorithm for constrained optimization of random simulation models. One output is selected as objective to be minimized, while other must satisfy the given threshold value. Moreover, the simulation inputs must be integer and satisfy linear or nonlinear constraints. The research applies a sequentialized experimental design to specify the simulation input combinations, Kriging (or spatial correlation modeling) to analyze the global simulation input/output data resulting from these designs, and nonlinear programming to estimate the optimal solution from the Kriging metamodels. In addition, a simulation model is developed for different inventory planning...
Multi-level asynchronous delta-sigma modulation based ADC
, Article ICIAS 2012 - 2012 4th International Conference on Intelligent and Advanced Systems: A Conference of World Engineering, Science and Technology Congress (ESTCON) - Conference Proceedings, 12 June 2012 through 14 June 2012 ; Volume 2 , June , 2012 , Pages 725-728 ; 9781457719677 (ISBN) ; Aghdam, E. N ; Najafi, V ; Sharif University of Technology
2012
Abstract
A Multi-level asynchronous delta sigma modulator consist of several Schmitt-triggers and a novel time-to-digital converter is presented as a core of a delta sigma modulation based analog to digital converter (ADC). The modulator firstly modulates the amplitude of its analog input signal to a multilevel asynchronous duty-cycle modulated signal. Then a time to digital converter (TDC) must be applied to generate digital representation of the received signal from the multi-level asynchronous duty-cycle modulated signal. A multi-level structure has been developed in this work while the prior works often used a single Schmitt. One of the most important limitations in conventional asynchronous...
Trunk hybrid passive–active musculoskeletal modeling to determine the detailed t12–s1 response under in vivo loads
, Article Annals of Biomedical Engineering ; Volume 46, Issue 11 , 2018 , Pages 1830-1843 ; 00906964 (ISSN) ; Arjmand, N ; Shirazi Adl, A ; Sharif University of Technology
Springer New York LLC
2018
Abstract
Biomechanical models of the spine either simplify intervertebral joints (using spherical joints or deformable beams) in musculoskeletal (MS) or overlook musculature in geometrically-detailed passive finite element (FE) models. These distinct active and passive models therefore fail to determine in vivo stresses and strains within and load-sharing among the joint structures (discs, ligaments, and facets). A novel hybrid active–passive spine model is therefore developed in which estimated trunk muscle forces from a MS model for in vivo activities drive a mechanically-equivalent passive FE model to quantify in vivo T12–S1 compression/shear loads, intradiscal pressures (IDP), centers of rotation...
Effect of changes in the lumbar posture in lifting on trunk muscle and spinal loads: A combined in vivo, musculoskeletal, and finite element model study
, Article Journal of Biomechanics ; Volume 104 , February , 2020 ; Arjmand, N ; Shirazi Adl, A ; Sharif University of Technology
Elsevier Ltd
2020
Abstract
Irrespective of the lifting technique (squat or stoop), the lumbar spine posture (more kyphotic versus more lordotic) adopted during lifting activities is an important parameter affecting the active-passive spinal load distribution. The advantages in either posture while lifting remains, however, a matter of debate. To comprehensively investigate the role on the trunk biomechanics of changes in the lumbar posture (lordotic, free or kyphotic) during forward trunk flexion, validated musculoskeletal and finite element models, driven by in vivo kinematics data, were used to estimate detailed internal tissue stresses-forces in and load-sharing among various joint active-passive tissues. Findings...
Position and Attitude Synchronization of Nano-Satellites Formation Flying Under J2 and Atmospheric Drag Perturbation
, M.Sc. Thesis Sharif University of Technology ; Alasty, Aria (Supervisor) ; Salarieh, Hassan (Supervisor)
Abstract
Spacecrafts formation flying is defined as tracking or keeping of desired distance, relative position and attitude of two or more spacecrafts during a maneuver. Division of tasks between various smaller spacecraft’s and so reduction of need to advanced technologies, increase in reliability in system and doing special missions like 3-D imaging of planets and combining parameter measurements are some advantages of this method. For development of this method, in this thesisin addition of reviewing the common methods in spacecraft’s formation flying, we are supposed to provide a simple and new method called distributed control for controlling a formation of spacecrafts. Additionally by providing...
Probability of missed detection as a criterion for receiver placement in MIMO PCL
, Article IEEE National Radar Conference - Proceedings, 7 May 2012 through 11 May 2012, Atlanta, GA ; 2012 , Pages 0924-0927 ; 10975659 (ISSN) ; 9781467306584 (ISBN) ; Chitgarha, M. M ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
IEEE
2012
Abstract
Using multiple antennas at the transmit and receive sides of a passive radar brings both the benefits of MIMO radar and passive radar. However one of the obstacles arisen in such configuration is the receive antennas placement in proper positions so that the radar performance is improved. Here we just consider the case of positioning one receiver among multiple illuminators of opportunity. Indeed it is a start for the solution of optimizing the geometry of the multiple receivers in a passive radar
An efficient method for the ring opening of epoxides with aromatic amines by Sb(III) chloride under microwave irradiation
, Article Journal of Chemical Research ; Issue 4 , 2008 , Pages 220-221 ; 03082342 (ISSN) ; Hashemi, M. M ; Mottaghi, M. M ; Foroughi, M. M ; Sharif University of Technology
2008
Abstract
SbCl3 supported on montmorillonite K-10 is an efficient catalyst for the ring opening of epoxides with aromatic amines under solvent-free conditions and microwave irradiation to give the corresponding b-amino alcohols in high yields with high regioselectivity
Resource allocation for uav-enabled integrated sensing and communication (isac) via multi-objective optimization
, Article ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings ; Volume 2023-June , 2023 ; 15206149 (ISSN); 978-172816327-7 (ISBN) ; Naghsh, M. M ; Karbasi, M ; Nayebi, M. M ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2023
Abstract
In this paper, we consider an integrated sensing and communication (ISAC) system with wireless power transfer (WPT) where an unmanned aerial vehicle (UAV)-based radar serves a group of energy-limited communication users in addition to its sensing functionality. In this architecture, the radar senses the environment in phase 1 (namely sensing phase) and mean-while, the communications users (nodes) harvest and store the energy from the radar transmit signal. The stored energy is then used for information transmission from the nodes to UAV in phase 2, i.e., uplink phase. Performance of the radar system depends on the transmit signal as well as the receive filter; the energy of the transmit...
MIMO radar signal design to improve the MIMO ambiguity function via maximizing its peak
, Article Signal Processing ; Volume 118 , 2016 , Pages 139-152 ; 01651684 (ISSN) ; Radmard, M ; Nazari Majd, M ; Karbasi, S. M ; Nayebi, M. M ; Sharif University of Technology
Elsevier
2016
Abstract
One of the important obstacles in MIMO (Multiple Input Multiple Output) radars is the issue of designing proper transmit signals. Indeed, the capability of signal design is a significant advantage in MIMO radars, through which, the system can achieve much better performance. Many different aspects of this performance improvement have been considered yet, and the transmit signals have been designed to attain such goal, e.g., getting higher SNR or better detector's performance at the receiver. However, an important tool for evaluating the radar's performance is its ambiguity function. In this paper, we consider the problem of transmit signal design, in order to optimize the ambiguity function...
Detection-localization tradeoff in MIMO radars
, Article Radioengineering ; Volume 26, Issue 2 , 2017 , Pages 581-587 ; 12102512 (ISSN) ; Radmard, M ; Chitgarha, M. M ; Bastani, M. H ; Nayebi, M. M ; Sharif University of Technology
2017
Abstract
Two gains play key roles in recently developed MIMO wireless communication systems: "spatial diversity" gain and "spatial multiplexing" gain. The diversity gain refers to the capability to decrease the error rate of the MIMO channel, while the multiplexing gain implicitly refers to the amount of increase in the capacity of the MIMO channel. It has been shown that there is a fundamental tradeoff between these two types of gains, meaning interplay between increasing reliability (via an increase in the diversity gain) and increasing data rate (via an increase in the multiplexing gain). On the other hand, recently, MIMO radars have attracted much attention for their superior ability to enhance...
Antenna placement and power allocation optimization in MIMO detection
, Article IEEE Transactions on Aerospace and Electronic Systems ; Vol. 50, Issue 2 , April , 2014 , pp. 1468-1478 ; Chitgarha, M. M ; Majd, M. N ; Nayebi, M. M ; Sharif University of Technology
2014
Abstract
It is a well known fact that using multiple antennas at transmit and receive sides improves the detection performance. However, in such multiple-input multiple-output (MIMO) configuration, proper positioning of transmitters and receivers is a big challenge that can have significant influence on the performance of the overall system. In addition, determining the power of each transmitter under a total power constraint is a problem that should be solved in order to enhance the performance and coverage of such a system. In this paper, we design the Neyman-Pearson detector under the Rayleigh scatter model and use it to introduce a criterion for the antenna placement at both transmit and receive...
Ambiguity function of MIMO radar with widely separated antennas
, Article Proceedings International Radar Symposium ; 16 -18 June , 2014 ; ISSN: 21555753 ; Chitgarha, M. M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
2014
Abstract
There has been much interest, recently, towards exploiting the Multiple-Input Multiple-Output (MIMO) technique in radar. It is shown that using multiple antennas at transmit and receive sides can improve the performance of the system. However, in order to analyze the system's performance, its ambiguity function, i.e. the ambiguity function of a MIMO radar, is needed to be defined. In this paper, beginning from the information theoretic definitions, we derive such function, specifically for a MIMO radar with widely separated antennas
Choosing the position of the receiver in a MISO passive radar system
, Article European Microwave Week 2012: "Space for Microwaves", EuMW 2012, Conference Proceedings - 9th European Radar Conference, EuRAD 2012 ; 2012 , Pages 318-321 ; 9782874870293 (ISBN) ; Majd, M. N ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
2012
Abstract
By combining the two ideas of MIMO (Multiple Input Multiple Output) and PCL (Passive Coherent Location) in radar, one can achieve the advantages of both recently developed techniques simultaneously. While using multiple antennas at the receive side provides a spatial diversity of the object to be detected, using multiple illuminators of opportunity, most importantly, makes the radar covert to the interceptors. One obstacle in such MIMO configuration is choosing the positions of the receive antennas. In this paper, after analyzing the Neyman-Pearson detector for the DVB-T based PCL, we introduce the probability of missed detection as a criterion to place the receive antenna. Here, we only...
Adaptive filtering techniques in passive radar
, Article Proceedings International Radar Symposium, Dresden ; Volume 2 , June , 2013 , Pages 1067-1078 ; 21555753 (ISSN) ; 9783954042234 (ISBN) ; Radmard, M ; Majd, M. N ; Nayebi, M. M ; Sharif University of Technology
2013
Abstract
One of the most important obstacles in passive radar applications is removing the direct signal from the target channel. Otherwise, week echoes from the targets in the target channel would be ignored due to the limited dynamic range of the system. One of the most effective techniques in this field is using adaptive filters. In this paper various adaptive filters are introduced and their performances are shown and compared
Ambiguity function based receiver placement in multi-site radar
, Article 2016 CIE International Conference on Radar, RADAR 2016, 10 October 2016 through 13 October 2016 ; 2017 ; 9781509048281 (ISBN) ; Chitgarha, M. M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
2017
Abstract
It has been shown that using multiple antennas in a radar system improves the performance considerably, since multiple target echoes are received from different aspect angles of the target. In this way, the target detection is improved. However, when using multiple antennas, some problems, such as designing the transmit signals, synchronization, etc. emerge that should be solved. One of such problems is the receiver placement. Receiver placement deals with choosing a proper position for the receive antenna in order to optimize the whole system's performance. In this paper, a receiver placement procedure based on improving the radar ambiguity function is proposed for the case of a multisite...
Improving MIMO radar's performance through receivers' positioning
, Article IET Signal Processing ; Volume 11, Issue 5 , 2017 , Pages 622-630 ; 17519675 (ISSN) ; Radmard, M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
Institution of Engineering and Technology
2017
Abstract
By employing the MIMO (multiple-input-multiple-output) technology in radar, some new problems emerged, that, in order to benefit the MIMO gains in radar, it was necessary to solve them suitably. One of such obstacles is determining the positions of receive antennas in a MIMO radar system with widely separated antennas (WS MIMO radar), since it is shown that the antennas' positions affect the whole system's performance considerably. In this study, a proper receivers' positioning procedure is proposed. To do this end, four criteria are developed based on the proposed MIMO detector and the MIMO ambiguity function. The simulations verify that the proposed positioning procedure improves the...
Silylation of hydroxy groups with HMDS under microwave irradiation and solvent-free conditions
, Article Phosphorus, Sulfur and Silicon and Related Elements ; Volume 177, Issue 2 , 2002 , Pages 289-292 ; 10426507 (ISSN) ; Saidi, M. R ; Bolourtchian, M ; Heravi, M. M ; Sharif University of Technology
2002
Abstract
Phenols and alcohols are silylated with hexamethyldisilazane (HMDS) under microwave irradiation in solvent-free condition in good to excellent yields
Dynamic analysis of carbon nanotubes under electrostatic actuation using modified couple stress theory
, Article Acta Mechanica ; Vol. 225, Issue 6 , June , 2014 , pp. 1523-1535 ; Online ISSN: 1619-6937 ; Rastgoo, A ; Ahmadian, M. T ; Mashhadi, M. M ; Sharif University of Technology
2014
Abstract
Modified couple stress theory is a size-dependent theorem capturing the micro/nanoscale effects influencing the mechanical behaviors of the micro- and nanostructures. In this paper, it is applied to investigate the nonlinear vibration of carbon nanotubes under step DC voltage. The vibration, natural frequencies and dynamic pull-in characteristics of the carbon nanotubes are studied in detail. Moreover, the effects of various boundary conditions and geometries are scrutinized on the dynamic characteristics. The results reveal that application of this theory leads to the higher values of the natural frequencies and dynamic pull-in voltages
White space regions
, Article Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 22 January 2011 through 28 January 2011, Novy Smokovec ; Volume 6543 LNCS , 2011 , Pages 226-237 ; 03029743 (ISSN) ; 9783642183805 (ISBN) ; Fazli, M ; Ghodsi, M ; Safari, M ; Saghafian, M ; Tavakkoli, M ; Sharif University of Technology
2011
Abstract
We study a classical problem in communication and wireless networks called Finding White Space Regions. In this problem, we are given a set of antennas (points) some of which are noisy (black) and the rest are working fine (white). The goal is to find a set of convex hulls with maximum total area that cover all white points and exclude all black points. In other words, these convex hulls make it safe for white antennas to communicate with each other without any interference with black antennas. We study the problem on three different settings (based on overlapping between different convex hulls) and find hardness results and good approximation algorithms