Loading...
Search for: kiani--a
0.107 seconds

    Consistent calibration of magnetometers for nonlinear attitude determination

    , Article Measurement: Journal of the International Measurement Confederation ; Volume 73 , 2015 , Pages 180-190 ; 02632241 (ISSN) Kiani, M ; Pourtakdoust, S. H ; Sheikhy, A. A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Abstract Three-axis magnetometers (TAMs) have been widely utilized as the cornerstone of integrated navigation (IN) and attitude determination (AD) in many aerospace systems. However, accurate navigation and AD demands for precise calibration of TAM. For this purpose, a complete TAM calibration process is presented in the current research to compensate all of the key errors. In this regard, a hyper least square (HyperLS) estimator is extended for accurate and consistent ellipsoid fitting problem of TAM calibration. Subsequently, the calibrated TAM is utilized for real time attitude determination via nonlinear colored noise filters of extended Kalman filter, simplex unscented Kalman filter... 

    Assessing dynamic response of multispan viscoelastic thin beams under a moving mass via generalized moving least square method

    , Article Acta Mechanica Sinica/Lixue Xuebao ; Volume 26, Issue 5 , October , 2010 , Pages 721-733 ; 05677718 (ISSN) Kiani, K ; Nikkhoo, A ; Mehri, B ; Sharif University of Technology
    2010
    Abstract
    Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatial domain using generalized moving least square method (GMLSM) and then, discrete equations of motion based on Lagrange's equation are obtained. Maximum deflection and bending moments are considered as the important design parameters. The design parameter spectra in terms of mass weight and velocity of the moving mass are presented for multispan viscoelastic beams as well as various values of relaxation rate and beam span number. A reasonable good agreement is achieved between... 

    Prediction capabilities of classical and shear deformable beam models excited by a moving mass

    , Article Journal of Sound and Vibration ; Volume 320, Issue 3 , 2009 , Pages 632-648 ; 0022460X (ISSN) Kiani, K ; Nikkhoo, A ; Mehri, B ; Sharif University of Technology
    2009
    Abstract
    In this paper, a comprehensive assessment of design parameters for various beam theories subjected to a moving mass is investigated under different boundary conditions. The design parameters are adopted as the maximum dynamic deflection and bending moment of the beam. To this end, discrete equations of motion for classical Euler-Bernoulli, Timoshenko and higher-order beams under a moving mass are derived based on Hamilton's principle. The reproducing kernel particle method (RKPM) and extended Newmark-β method are utilized for spatial and time discretization of the problem, correspondingly. The design parameter spectra in terms of the beam slenderness, mass weight and velocity of the moving... 

    Parametric analyses of multispan viscoelastic shear deformable beams under excitation of a moving mass

    , Article Journal of Vibration and Acoustics, Transactions of the ASME ; Volume 131, Issue 5 , 2009 , Pages 0510091-05100912 ; 10489002 (ISSN) Kiani, K ; Nikkhoo, A ; Mehri, B ; Sharif University of Technology
    2009
    Abstract
    This paper presents a numerical parametric study on design parameters of multispan viscoelastic shear deformable beams subjected to a moving mass via generalized moving least squares method (GMLSM). For utilizing Lagrange's equations, the unknown parameters of the problem are stated in terms of GMLSM shape functions and the generalized Newmark-β scheme is applied for solving the discrete equations of motion in time domain. The effects of moving mass weight and velocity, material relaxation rate, slenderness, and span number of the beam on the design parameters and possibility of mass separation from the base beam are scrutinized in some detail. The results reveal that for low values of beam... 

    Entropy-based adaptive attitude estimation

    , Article Acta Astronautica ; Volume 144 , 2018 , Pages 271-282 ; 00945765 (ISSN) Kiani, M ; Barzegar, A ; Pourtakdoust, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Gaussian approximation filters have increasingly been developed to enhance the accuracy of attitude estimation in space missions. The effective employment of these algorithms demands accurate knowledge of system dynamics and measurement models, as well as their noise characteristics, which are usually unavailable or unreliable. An innovation-based adaptive filtering approach has been adopted as a solution to this problem; however, it exhibits two major challenges, namely appropriate window size selection and guaranteed assurance of positive definiteness for the estimated noise covariance matrices. The current work presents two novel techniques based on relative entropy and confidence level... 

    Design and simulation of Monopulse patch linear array for passive SAR satellite tracking

    , Article International Journal on Communications Antenna and Propagation ; Volume 2, Issue 1 , February , 2012 , Pages 45-50 ; 20395086 (ISSN) Kiani, S ; Pezeshk, A. M ; Pourghassem, H ; Sharif University of Technology
    Praise Worthy Prize S.r.l  2012
    Abstract
    The state-of-art technologies keep generating new ways of improving on remote sensing and Earth monitoring like Synthetic Aperture Radars that is widely used in military applications such as reconnaissance and espionage especially on military and industrial sensitive and strategic areas. In order to protection of strategic fields and being aware of hostile activities and also do sufficient countermeasure action, in this research a simple SAR satellite detection and tracking is proposed by using a reliable fast search and tracking antenna considering the limitation of radio visibility duration of SAR satellites. The tracking antenna is a DBF phased array antenna with circular polarized patch... 

    Application of the adjoint multi-point and the robust optimization of shock control bump for transonic aerofoils and wings

    , Article Engineering Optimization ; Volume 48, Issue 11 , 2016 , Pages 1887-1909 ; 0305215X (ISSN) Mazaheri, K ; Nejati, A ; Chaharlang Kiani, K ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    A shock control bump (SCB) is a flow control method which uses a local small deformation in a flexible wing surface to considerably reduce the strength of shock waves and the resulting wave drag in transonic flows. Most of the reported research is devoted to optimization in a single flow condition. Here, both equally and variably weighted multi-point optimization and a robust adjoint optimization scheme are used to optimize the SCB. The numerical simulation of the turbulent viscous flow and a gradient-based adjoint algorithm are used to find the optimum location and shape of the SCB for two benchmark aerofoils. A multi-point optimization method under a constant-lift-coefficient constraint is... 

    In-plane and out-of-plane waves in nanoplates immersed in bidirectional magnetic fields

    , Article Structural Engineering and Mechanics ; Volume 61, Issue 1 , 2017 , Pages 65-76 ; 12254568 (ISSN) Kiani, K ; Gharebaghi, S. A ; Mehri, B ; Sharif University of Technology
    Techno Press  2017
    Abstract
    Prediction of the characteristics of both in-plane and out-of-plane elastic waves within conducting nanoplates in the presence of bidirectionally in-plane magnetic fields is of interest. Using Lorentz's formulas and nonlocal continuum theory of Eringen, the nonlocal elastic version of the equations of motion is obtained. The frequencies as well as the corresponding phase and group velocities pertinent to the in-plane and out-of-plane waves are analytically evaluated. The roles of the strength of in-plane magnetic field, wavenumber, wave direction, nanoplate's thickness, and small-scale parameter on characteristics of waves are discussed. The obtained results show that the in-plane... 

    Numerical modeling of die filling of semi-solid A356 aluminum alloy

    , Article Semi-Solid Processing of Alloys and Composites 10 - Selected, peer reviewed papers from the 10th International Conference on Semi-Solid Processing of Alloy and Composites, S2P 2008, Aachen, 16 September 2008 through 18 September 2008 ; Volume 141-143 , 2008 , Pages 605-610 ; 10120394 (ISSN); 9771012039401 (ISBN) Foroughi, A ; Aashuri, H ; Narimannezhad, A ; Khosravani, A ; Kiani, M ; Sharif University of Technology
    Trans Tech Publications Ltd  2008
    Abstract
    Computer base and simulation technique have been applied for modeling the semi-solid die filling and part of the solidification process of aluminum A356 alloy. A fairly simple one-phase rheological model has been implemented into a fluid flow finite element software Procast, to solve the partial differential equations. This model is purely viscous nature and is implemented in the power law cut-off model of Procast. The constitutive parameters of this model were determined for a rheocast A356 alloy. Using these parameters and comparing the simulation results with experimental data showed good correlation with the model prediction. The designed die for rheocasting was applied for the... 

    Experimental validation of a novel radiation based model for spacecraft attitude estimation

    , Article Sensors and Actuators, A: Physical ; Volume 250 , 2016 , Pages 114-122 ; 09244247 (ISSN) Labibian, A ; Pourtakdoust, S. H ; Kiani, M ; Sheikhi, A. A ; Alikhani, A ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Attitude Determination (AD) is one of the key requirements of many current and emerging remote sensing missions. As such AD has been traditionally accomplished through a variety of algorithms and measurement models pertinent to sensing mechanisms. The current paper addresses conceptual validation and utility of a novel radiation based heat (measurement) model for space application. The proposed new Heat Attitude (HA) model utilizes temperature data to relate the Satellite Surfaces’ (SS) Net Heat Flux (NHF) to attitude assuming that the satellite navigational data are available. As Sun and the Earth are considered the main external sources of radiation, their effects are modeled for the SS... 

    Morphological features of silicon rich phase in powder thixoformed spray atomized hyper-eutectic Al-Si alloy

    , Article Semi-Solid Processing of Alloys and Composites 10 - Selected, peer reviewed papers from the 10th International Conference on Semi-Solid Processing of Alloy and Composites, S2P 2008, Aachen, 16 September 2008 through 18 September 2008 ; Volume 141-143 , 2008 , Pages 493-498 ; 10120394 (ISSN); 9771012039401 (ISBN) Kiani, M ; Aashuri, H ; Nategh, S ; Foroughi, A ; Narimannezhad, A ; Khosravani, A ; Sharif University of Technology
    Trans Tech Publications Ltd  2008
    Abstract
    Microstructural evolution of the spray atomized and powder thixoformed hyper-eutectic A390 aluminum alloy was investigated. The spray atomized powder revealed homogeneous and very fine silicon particles distribution, due to the rapid solidification of the alloy. The semi-solid powders were extruded into a closed die cavity through a hole for the plastic deformation of the powder particles. A drop forge of 45kg weight at different heights was used in this investigation. Remarkable rearrangement and growth of the silicon rich phase was revealed in the final stage  

    The application of suction and blowing in performance improvement of transonic airfoils with shock control bump

    , Article Scientia Iranica ; Volume 24, Issue 1 , 2017 , Pages 274-292 ; 10263098 (ISSN) Mazaheri, K ; Nejati, A ; Charlang Kiani, K. C ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    Shock Control Bump (SCB) reduces the wave drag in transonic ight. To control the boundary layer separation and to reduce the wave drag for two transonic airfoils, RAE-2822 and NACA-64A010, we investigate the application of two flow control methods, i.e. suction and blowing, to add them to the SCB. An adjoint gradient-based optimization algorithm is used to find the optimum shape and location of SCB. The performance of both Hybrid Suction/SCB (HSS) and Hybrid Blowing/SCB (HBS) is a function of the sucked or injected mass flow rate and their position. A parametric study is performed to find the near optimum values of the aerodynamic coefficients and efficiency. A RANS solver is validated and... 

    Wettability alteration of carbonate rock by nonionic surfactants in water-based drilling fluid

    , Article International Journal of Environmental Science and Technology ; 2018 ; 17351472 (ISSN) Kiani, M ; Ramazani SaadatAbadi, A ; Jafari Behbahani, T ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies  2018
    Abstract
    The influx of solid or liquid particles of drilling mud into the pores of rock or mud loss phenomenon and clay swelling can sometimes lead to severe productive formation damage and cause to wettability alterations of reservoir rock from hydrophilic to oleophilic. Therefore, designing an appropriate fluid that is compatible with formation fluids and could reduce reservoir damage and increase the productivity of wells is very important. The two main mechanisms of surfactants are reduction of the surface tension and wettability alteration of rock reservoir that are effective in taking the oil. Regarding the importance of the wettability in reservoir productivity, this article is aimed to study... 

    Wettability alteration of carbonate rock by nonionic surfactants in water-based drilling fluid

    , Article International Journal of Environmental Science and Technology ; Volume 16, Issue 11 , 2019 , Pages 6547-6556 ; 17351472 (ISSN) Kiani, M ; Ramazani SaadatAbadi, A ; Jafari Behbahani, T ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies  2019
    Abstract
    The influx of solid or liquid particles of drilling mud into the pores of rock or mud loss phenomenon and clay swelling can sometimes lead to severe productive formation damage and cause to wettability alterations of reservoir rock from hydrophilic to oleophilic. Therefore, designing an appropriate fluid that is compatible with formation fluids and could reduce reservoir damage and increase the productivity of wells is very important. The two main mechanisms of surfactants are reduction of the surface tension and wettability alteration of rock reservoir that are effective in taking the oil. Regarding the importance of the wettability in reservoir productivity, this article is aimed to study... 

    Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 42, Issue 9 , 2010 , Pages 2391-2401 ; 13869477 (ISSN) Kiani, K ; Sharif University of Technology
    2010
    Abstract
    Single-walled carbon nanotubes (SWCNTs) can be promising delivery nanodevices for a diverse range of applications, however, little is known about their dynamical interactions with moving nanoscale particles. In this paper, dynamic response of a SWCNT subjected to a moving nanoparticle is examined in the framework of the nonlocal continuum theory of Eringen. The inertial effects of the moving nanoparticle and the existing friction between the nanoparticle surface and the inner surface of the SWCNT are incorporated in the formulation of the problem. The equivalent continuum structure associated with the SWCNT is considered and modeled using nonlocal Rayleigh beam theory under simply supported... 

    Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory via a perturbation technique

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 43, Issue 1 , November , 2010 , Pages 387-397 ; 13869477 (ISSN) Kiani, K ; Sharif University of Technology
    2010
    Abstract
    The free longitudinal vibration of tapered nanowires is investigated in the context of nonlocal continuum theory. The problem is studied for the nanowires with linearly varied radii under fixedfixed and fixedfree boundary conditions. In order to assess the problem in a more general form, a perturbation technique is proposed based on the Fredholm alternative theorem. The natural frequencies, corresponding mode shapes, and phase velocities of the tapered nanowires are derived analytically up to the second-order perturbation for different boundary conditions. The predicted results by the perturbation technique are successfully verified with those of the exact solution. The obtained results... 

    A meshless approach for free transverse vibration of embedded single-walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect

    , Article International Journal of Mechanical Sciences ; Volume 52, Issue 10 , 2010 , Pages 1343-1356 ; 00207403 (ISSN) Kiani, K ; Sharif University of Technology
    2010
    Abstract
    A single-walled nanotube structure embedded in an elastic matrix is simulated by the nonlocal EulerBernoulli, Timoshenko, and higher order beams. The beams are assumed to be elastically supported and attached to continuous lateral and rotational springs to take into account the effects of the surrounding matrix. The discrete equations of motion associated with free transverse vibration of each model are established in the context of the nonlocal continuum mechanics of Eringen using Hamilton's principle and an efficient meshless method. The effects of slenderness ratio of the nanotube, small scale effect parameter, initial axial force and the stiffness of the surrounding matrix on the natural... 

    Robust integrated orbit and attitude estimation using geophysical data

    , Article Aerospace Science and Technology ; Volume 93 , 2019 ; 12709638 (ISSN) Kiani, M ; Sharif University of Technology
    Elsevier Masson SAS  2019
    Abstract
    Geophysical information such as the Earth geomagnetic field and gravity gradient (GG) data can provide a basis for autonomous concurrent orbit and attitude estimation (COAE) of satellites in low earth orbits (LEO), as magnetometers and gravity gradiometer measurements are in general functions of time, position as well as the vehicle's orientation. While gradiometer has recently been investigated just for orbit estimation (OE), the current study is focused on COAE via only utility of the GG data. To this aim, observability conditions are analyzed, where the sensitivity of the proposed COAE approach with respect to various system and roto-translational elements is also examined. Considering... 

    A smart tri-layered nanofibrous hydrogel thin film with controlled release of dual drugs for chemo-thermal therapy of breast cancer

    , Article Journal of Drug Delivery Science and Technology ; Volume 76 , 2022 ; 17732247 (ISSN) Asgari, S ; Mohammadi Ziarani, G ; Badiei, A ; Pourjavadi, A ; Kiani, M ; Sharif University of Technology
    Editions de Sante  2022
    Abstract
    A tri-layered nanofibrous hydrogel thin film with temperature sensitivity is introduced as a new controlled drug release system to treat breast cancer. A simultaneous heat generation with the tunable release of dual drugs is observed in response to visible light radiation. A tri-layered nanofibrous sheet was fabricated through sequential electrospinning the blends of Au@Chit@DOX-loaded poly(N-isopropylacrylamide-co-N-methylol acrylamide) (poly (NIPAAm-co-NMA)) and Curcumin-loaded poly (vinyl alcohol) (Cu-loaded PVA), where the Cu-loaded PVA nanofibers (NFs) are sandwiched between two layers of Au@Chit@DOX-loaded poly (NIPAAm-co-NMA) NFs. After thermal crosslinking of the tri-layered... 

    Facile synthesis of CuO@PbS core/shell nanowire arrays

    , Article Materials Letters ; Volume 193 , 2017 , Pages 259-262 ; 0167577X (ISSN) Farshidi, H ; Youzbashi, A. A ; Heidari Saani, M ; Rashidi, A ; Kazemzadeh, A ; Kiani, F ; Sharif University of Technology
    2017
    Abstract
    Nanowire arrays of copper oxide were first grown vertically using simple and cost effective thermal oxidation method on a copper foil. Subsequently, in order to deposit and grow PbS nanocyrstalline thin films on CuO NWs by utilizing the chemical bath deposition technique, these arrays were immersed as the substrate in the reaction solution consisting of Pb(NO3)2, (NH2)2CS and NaOH. The final products were characterized in detail by which the formation of uniform, unique arrays of CuO@PbS core–shell NWs was confirmed. Due to the nature of methods employed in synthesis of this hetero structure, the tuning of core and shell size and consequently properties of the novel structure is easily...