Loading...
Search for:
kohantorabi--m
0.124 seconds
Total 19327 records
AgPt nanoparticles supported on magnetic graphene oxide nanosheets for catalytic reduction of 4-nitrophenol: studies of kinetics and mechanism
, Article Applied Organometallic Chemistry ; Volume 31, Issue 11 , 2017 ; 02682605 (ISSN) ; Gholami, M. R ; Sharif University of Technology
2017
Abstract
AgxPt100−x (x = 0, 25, 50, 75 and 100) nanoparticles were grown on the surface of magnetic graphene oxide nanosheets (Fe3O4@GO) for the first time. The as-prepared nanocomposites were characterized using various techniques such as Fourier transform infrared spectroscopy, powder X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller surface area analysis, vibrating sample magnetometry and thermogravimetric analysis. The Fe3O4@GO-AgxPt100−x catalysts were applied in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol using sodium borohydride (NaBH4). The synthesized nanocomposites...
M: XNi100- X (M = Ag, and Co) nanoparticles supported on CeO2 nanorods derived from Ce-metal organic frameworks as an effective catalyst for reduction of organic pollutants: Langmuir-Hinshelwood kinetics and mechanism
, Article New Journal of Chemistry ; Volume 41, Issue 19 , 2017 , Pages 10948-10958 ; 11440546 (ISSN) ; Gholami, M. R ; Sharif University of Technology
Royal Society of Chemistry
2017
Abstract
In this study, AgxNi100-x, and CoxNi100-x (x = 0, 20, 40, 60, 80, and 100) bimetallic nanoparticles were successfully decorated on the surface of CeO2 nanorods derived from Ce-metal organic frameworks (Ce-MOF). The as-synthesized products were characterized using different techniques including XRD, FE-SEM, EDX, TEM, ICP, and BET. The as-prepared nanocomposites showed remarkable catalytic activity towards the reduction of organic pollutants such as 4-nitrophenol (4-NP), and rhodamine-B dye (RhB) by NaBH4 solution, with high stability and reusability for five consecutive cycles. The obtained results indicated that among these nanocomposites, Ag80Ni20@CeO2, and Co60Ni40@CeO2 exhibited the best...
Cyclohexene oxidation catalyzed by flower-like core-shell Fe3O4@Au/metal organic frameworks nanocomposite
, Article Materials Chemistry and Physics ; Volume 213 , July , 2018 , Pages 472-481 ; 02540584 (ISSN) ; Gholami, M. R ; Sharif University of Technology
Elsevier Ltd
2018
Abstract
In this study, Fe3O4@Au/metal-organic frameworks (Fe3O4@Au/MOF) nanocomposite with flower-like core-shell structure was successfully synthesized via a hydrothermal route. The as-prepared catalyst was characterized using different techniques such as FT-IR, XRD, TEM, EDX, VSM, TGA, BET, and ICP. This nanocomposite exhibited an excellent catalytic performance in selective oxidation of cyclohexene to 2-cyclohexene-1-one by using molecular oxygen as green oxidant. The influence of reaction conditions including, pressure of molecular oxygen, temperature, time, solvent, and amount of catalyst on conversion and selectivity of products were evaluated. The activation energy (Ea) of the reaction was...
Fabrication of novel ternary Au/CeO2@g-C3N4 nanocomposite: kinetics and mechanism investigation of 4-nitrophenol reduction, and benzyl alcohol oxidation
, Article Applied Physics A: Materials Science and Processing ; Volume 124, Issue 6 , 2018 ; 09478396 (ISSN) ; Gholami, M. R ; Sharif University of Technology
Springer Verlag
2018
Abstract
Abstract: Au nanoparticles supported on cerium oxide/graphitic carbon nitride (CeO2@g-C3N4) was synthesized and used as heterogeneous catalyst in redox reaction. The catalyst was characterized by different techniques such as FT-IR, XRD, FE-SEM, EDS, TEM, BET, TGA, and ICP. The as-prepared ternary nanocomposite was used as an effective catalyst for the reduction of toxic 4-nitrophenol to useful 4-aminophenol by NaBH4. The rate constant value of reduction reaction reached up to 0.106 s−1 by Au/CeO2@g-C3N4, which was 3.8, and 8.8 times higher than that of Au@CeO2 (0.028 s−1), and Au@g-C3N4 (0.012 s−1) nanocomposites, respectively. The superior catalytic performance of as-prepared catalyst in...
Kinetic analysis of the reduction of 4-nitrophenol catalyzed by CeO2 nanorods-supported CuNi nanoparticles
, Article Industrial and Engineering Chemistry Research ; Volume 56, Issue 5 , 2017 , Pages 1159-1167 ; 08885885 (ISSN) ; Gholami, M. R ; Sharif University of Technology
American Chemical Society
2017
Abstract
CuxNi100-x (x = 0, 20, 40, 60, 80, and 100) nanoparticles were uniformly grown on the surface of CeO2 by the liquid impregnation method. The as-prepared nanocomposite abbreviated CuxNi100-x-CeO2 was characterized by various techniques including, X-ray powder diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, Brunauer-Emmett-Teller surface area analyzer, and transmission electron microscopy. The catalytic activity of CuxNi100-x-CeO2 nanocomposites was investigated in 4-nitrophenol (4-NP) reduction reaction. Among the synthesized nanocomposites, Cu60Ni40-CeO2 exhibited the best catalytic activity (rate constant as 0.1654 s-1) with high recyclability...
Supported PtxPd1-x bimetallic nanoparticles on ionic liquid-functionalized SiO2@graphene oxide nanocomposite and its application as an effective multiphasic catalyst
, Article Applied Catalysis A: General ; Volume 579 , 2019 , Pages 30-43 ; 0926860X (ISSN) ; Giannakis, S ; Gholami, M. R ; Sharif University of Technology
Elsevier B.V
2019
Abstract
In this work, PtxPd1-x (x = 0, 0.5, and 1)nanoparticles (NPs)were synthesized on the surface of SiO2@graphene oxide which covered by 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF6)ionic liquid (IL)layer. FT-IR spectroscopy, zeta potential, CHN elemental analysis, XRD, XPS, SEM, EDX, TEM, TGA, BET, and ICP-AES techniques were applied for the characterization of the multiphasic catalyst. The as-prepared nanocomposite was used as an effective heterogeneous catalyst for the oxidation of cyclohexene by molecular oxygen, as a green oxidant. Different experimental conditions such as oxygen pressure, reaction time, reaction temperature and amount of catalyst were investigated in this...
Probing solvent-solvent and solute-solvent interactions in surfactant binary mixtures: Solvatochromic parameters, preferential solvation, and quantum theory of atoms in molecules analysis
, Article RSC Advances ; Volume 6, Issue 22 , 2016 , Pages 18515-18524 ; 20462069 (ISSN) ; Fakhraee, M ; Salari, H ; Gholami, M. R ; Sharif University of Technology
Royal Society of Chemistry
2016
Abstract
The behaviour of solvatochromic absorbance probes (4-nitroaniline, 4-nitroanisole, and Reichardt's dye) within binary mixtures of polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether (Triton X-100 or TX-100)/organic solvents (2-propanol, hexanol, butyl acetate, THF, toluene, and p-xylene) was extensively explored by using solvatochromism and the quantum theory of atoms in molecules (QTAIM). To be more precise, the polarity parameters, ET N, and Kamlet-Taft parameters, such as the hydrogen bond donor ability (HBD) (α), hydrogen bond acceptor ability (HBA) (β), and dipolarity/polarizability (π∗), have been investigated in selected mixtures at 298 K. All binary mixtures exhibit complex...
Surfactant binary systems: Ab initio calculations, preferential solvation, and investigation of solvatochromic parameters
, Article Journal of Chemical and Engineering Data ; Volume 61, Issue 1 , 2016 , Pages 255-263 ; 00219568 (ISSN) ; Salari, H ; Fakhraee, M ; Gholami, M.R ; Sharif University of Technology
American Chemical Society
2016
Abstract
Solvatochromic UV-vis shifts of three probes 4-nitroaniline, 4-nitroanisol, and Reichardt's dye in binary mixtures of polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether (Triton X-100 or TX-100) with methanol, ethanol, 1-propanol, and water have been investigated at 298 K. Structural and intermolecular interactions of solvatochromic probes were determined in these systems. Solvatochromic parameters, including normalized polarity (ETN), dipolarity-polarizability (π∗), hydrogen-bond donor (α), and hydrogen-bond acceptor (β) abilities, were measured at a wide range of mole fraction (0 ≤ X ≤ 1) with 0.1 increment. Interestingly, a similar behavior of ETN and α is observed in...
An innovative, highly stable Ag/ZIF-67@GO nanocomposite with exceptional peroxymonosulfate (PMS) activation efficacy, for the destruction of chemical and microbiological contaminants under visible light
, Article Journal of Hazardous Materials ; Volume 413 , 2021 ; 03043894 (ISSN) ; Giannakis, S ; Moussavi, G ; Bensimon, M ; Gholami, M. R ; Pulgarin, C ; Sharif University of Technology
Elsevier B.V
2021
Abstract
In this work, Ag nanoparticles were loaded on ZIF-67 covered by graphene oxide (Ag/ZIF-67@GO), and its catalytic performance was studied for the heterogeneous activation of peroxymonosulfate (PMS) under visible-light. The catalyst surface morphology and structure were analyzed by FT-IR, XRD, XPS, DRS, FE-SEM, EDX, TEM, BET, ICP-AES and TGA analysis. The efficacy of PMS activation by the Ag/ZIF-67@GO under visible light was assessed by phenol degradation and E. coli inactivation. Phenol was completely degraded within 30 min by HO•, SO4•− and O2•− generated through the photocatalytic PMS activation. In addition, total E. coli inactivation was attained in 15 min that confirmed the highly...
A systematic investigation on the bactericidal transient species generated by photo-sensitization of natural organic matter (NOM) during solar and photo-Fenton disinfection of surface waters
, Article Applied Catalysis B: Environmental ; Volume 244 , 2019 , Pages 983-995 ; 09263373 (ISSN) ; Giannakis, S ; Gholami, M. R ; Feng, L ; Pulgarin, C ; Sharif University of Technology
Elsevier B.V
2019
Abstract
In this work, the role of dissolved oxygen in the solar and the photo-Fenton-mediated E. coli inactivation process was put under scrutiny. The effect of transient species that were produced in the presence of various natural organic matter isolates (NOM), namely Suwannee River (SR) NOM, Nordic Reservoir (NR) NOM, SR Humic acid (SRHA), and SR Fulvic acid (SRFA) was studied in detail. The role of 1 O2 in this reaction was systematically evaluated by modifying the O2 concentration (N2/O2 purging) and the matrix composition (10, 50, and 100% deuterium oxide (D2O) v/v). In the presence of NOM, 1 O2 was generated and the enhancement of E. coli inactivation rate due to charge transfer from triplet...
Theoretical and Experimental Study of the Influence of Chemical Environments and Investigation of their Effects on the Kinetics of Redox Reactions using Metal and Metal Oxide Nanocatalyst
, Ph.D. Dissertation Sharif University of Technology ; Gholami, Mohammad Reza (Supervisor)
Abstract
Bimetallic nanoparticles with unique structure, synergistic effect between two metals, and the tunable physical/chemical properties have been used for catalysis. Various methods exist for the staibility, and improvement of the catalytic performance of nanoparticles. In this thesis, different co-catalysts were applied to increase tha staibility, and activity of nanoparticles and metal oxides. In this way, Ni-based bimetallic nanoparticles including CuNi, CoNi, and AgNi, and AgPt with different concentrations were synthesized on the cerium oxide nanorods derived from cerium metal-organic frameworks and magnetic graphene oxide nanosheets, respectively and characterized. The catalytic...
Solar-assisted bacterial disinfection and removal of contaminants of emerging concern by Fe2+-activated HSO5- vs. S2O82- in drinking water
, Article Applied Catalysis B: Environmental ; Volume 248 , 2019 , Pages 62-72 ; 09263373 (ISSN) ; Giannakis, S ; Marjanovic, M ; Kohantorabi, M ; Gholami, M. R ; Grandjean, D ; de Alencastro, L. F ; Pulgarín, C ; Sharif University of Technology
Elsevier B.V
2019
Abstract
This research demonstrates the feasibility to enhance solar disinfection (SODIS) treatment by addition of peroxymonosulfate (PMS) and peroxydisulfate (PDS) by the generation of sulfate (and hydroxyl) radicals through different activation routes. The different promoters were i) sunlight irradiation, ii) mild heat (40 °C), and iii) μM amounts of Fe2+, all present during actual field SODIS experiments, or voluntarily added alongside PMS/PDS. In a first approach, the promoters were studied separately, in pairs and finally all together in a combined process (CP). In all the cases, PMS showed a higher efficiency than PDS in E. coli removal, requiring lower concentration and a faster reaction time...
Study of Solvent-Solvent and Solute-Solvent Interactions and Measurement of Solvatochromic Parameters in Mixture of Molecular Solvents with Solvents
, M.Sc. Thesis Sharif University of Technology ; Gholami, Mohammad (Supervisor) ; Rahman Setayesh, Shahrbano (Supervisor) ; Salari, Hadi (Co-Advisor)
Abstract
Solvent-solvent and solute-solvent interactions were investigated in mixtures of Triton X-100 with water, methanol, ethanol, 1-propanol, tetrahydrofuran and butyl acetate. Solvatochromic parameters, including normalized polarity (E_T^N), dipolarity-polarizability (), hydrogen-bond donar (), and hydrogen-bond acceptor () abilities, were determined in these mixtures. We observed similar behavior for E_T^N and in TX-100/alcohols mixtures. Parameters confirmed the preferential solvation in mixtures of surfactant and solvents.
Experimental data were handled in preferential solvation model. Six binary systems exhibit a complex behavior for all three indicators. It was shown that...
Experimental data were handled in preferential solvation model. Six binary systems exhibit a complex behavior for all three indicators. It was shown that...
Probability of missed detection as a criterion for receiver placement in MIMO PCL
, Article IEEE National Radar Conference - Proceedings, 7 May 2012 through 11 May 2012, Atlanta, GA ; 2012 , Pages 0924-0927 ; 10975659 (ISSN) ; 9781467306584 (ISBN) ; Chitgarha, M. M ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
IEEE
2012
Abstract
Using multiple antennas at the transmit and receive sides of a passive radar brings both the benefits of MIMO radar and passive radar. However one of the obstacles arisen in such configuration is the receive antennas placement in proper positions so that the radar performance is improved. Here we just consider the case of positioning one receiver among multiple illuminators of opportunity. Indeed it is a start for the solution of optimizing the geometry of the multiple receivers in a passive radar
An efficient method for the ring opening of epoxides with aromatic amines by Sb(III) chloride under microwave irradiation
, Article Journal of Chemical Research ; Issue 4 , 2008 , Pages 220-221 ; 03082342 (ISSN) ; Hashemi, M. M ; Mottaghi, M. M ; Foroughi, M. M ; Sharif University of Technology
2008
Abstract
SbCl3 supported on montmorillonite K-10 is an efficient catalyst for the ring opening of epoxides with aromatic amines under solvent-free conditions and microwave irradiation to give the corresponding b-amino alcohols in high yields with high regioselectivity
MIMO radar signal design to improve the MIMO ambiguity function via maximizing its peak
, Article Signal Processing ; Volume 118 , 2016 , Pages 139-152 ; 01651684 (ISSN) ; Radmard, M ; Nazari Majd, M ; Karbasi, S. M ; Nayebi, M. M ; Sharif University of Technology
Elsevier
2016
Abstract
One of the important obstacles in MIMO (Multiple Input Multiple Output) radars is the issue of designing proper transmit signals. Indeed, the capability of signal design is a significant advantage in MIMO radars, through which, the system can achieve much better performance. Many different aspects of this performance improvement have been considered yet, and the transmit signals have been designed to attain such goal, e.g., getting higher SNR or better detector's performance at the receiver. However, an important tool for evaluating the radar's performance is its ambiguity function. In this paper, we consider the problem of transmit signal design, in order to optimize the ambiguity function...
Detection-localization tradeoff in MIMO radars
, Article Radioengineering ; Volume 26, Issue 2 , 2017 , Pages 581-587 ; 12102512 (ISSN) ; Radmard, M ; Chitgarha, M. M ; Bastani, M. H ; Nayebi, M. M ; Sharif University of Technology
2017
Abstract
Two gains play key roles in recently developed MIMO wireless communication systems: "spatial diversity" gain and "spatial multiplexing" gain. The diversity gain refers to the capability to decrease the error rate of the MIMO channel, while the multiplexing gain implicitly refers to the amount of increase in the capacity of the MIMO channel. It has been shown that there is a fundamental tradeoff between these two types of gains, meaning interplay between increasing reliability (via an increase in the diversity gain) and increasing data rate (via an increase in the multiplexing gain). On the other hand, recently, MIMO radars have attracted much attention for their superior ability to enhance...
Antenna placement and power allocation optimization in MIMO detection
, Article IEEE Transactions on Aerospace and Electronic Systems ; Vol. 50, Issue 2 , April , 2014 , pp. 1468-1478 ; Chitgarha, M. M ; Majd, M. N ; Nayebi, M. M ; Sharif University of Technology
2014
Abstract
It is a well known fact that using multiple antennas at transmit and receive sides improves the detection performance. However, in such multiple-input multiple-output (MIMO) configuration, proper positioning of transmitters and receivers is a big challenge that can have significant influence on the performance of the overall system. In addition, determining the power of each transmitter under a total power constraint is a problem that should be solved in order to enhance the performance and coverage of such a system. In this paper, we design the Neyman-Pearson detector under the Rayleigh scatter model and use it to introduce a criterion for the antenna placement at both transmit and receive...
Ambiguity function of MIMO radar with widely separated antennas
, Article Proceedings International Radar Symposium ; 16 -18 June , 2014 ; ISSN: 21555753 ; Chitgarha, M. M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
2014
Abstract
There has been much interest, recently, towards exploiting the Multiple-Input Multiple-Output (MIMO) technique in radar. It is shown that using multiple antennas at transmit and receive sides can improve the performance of the system. However, in order to analyze the system's performance, its ambiguity function, i.e. the ambiguity function of a MIMO radar, is needed to be defined. In this paper, beginning from the information theoretic definitions, we derive such function, specifically for a MIMO radar with widely separated antennas
Choosing the position of the receiver in a MISO passive radar system
, Article European Microwave Week 2012: "Space for Microwaves", EuMW 2012, Conference Proceedings - 9th European Radar Conference, EuRAD 2012 ; 2012 , Pages 318-321 ; 9782874870293 (ISBN) ; Majd, M. N ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
2012
Abstract
By combining the two ideas of MIMO (Multiple Input Multiple Output) and PCL (Passive Coherent Location) in radar, one can achieve the advantages of both recently developed techniques simultaneously. While using multiple antennas at the receive side provides a spatial diversity of the object to be detected, using multiple illuminators of opportunity, most importantly, makes the radar covert to the interceptors. One obstacle in such MIMO configuration is choosing the positions of the receive antennas. In this paper, after analyzing the Neyman-Pearson detector for the DVB-T based PCL, we introduce the probability of missed detection as a criterion to place the receive antenna. Here, we only...