Loading...
Search for:
kowsari-esfahan--r
0.12 seconds
Total 7460 records
A microfabricated platform for the study of chondrogenesis under different compressive loads
, Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 78 , 2018 , Pages 404-413 ; 17516161 (ISSN) ; Jahanbakhsh, A ; Saidi, M. S ; Bonakdar, S ; Sharif University of Technology
Elsevier Ltd
2018
Abstract
Microfluidic devices are beneficial in miniaturizing and multiplexing various cellular assays in a single platform. Chondrogenesis is known to pertain to chemical, topographical, and mechanical cues in the microenvironment. Mechanical cues themselves have numerous parameters such as strain magnitude, frequency, and stimulation time. Effects of different strain magnitudes on the chondrogenic differentiation of adult stem cells have not been explored thoroughly. Here, a new multilayer microdevice is presented for the unidirectional compressive stimulation of cells in a three-dimensional cell culture. Numerical simulations were performed to evaluate and optimize the design. Results showed a...
Induced cell migration based on a bioactive hydrogel sheet combined with a perfused microfluidic system
, Article Biomedical Materials (Bristol) ; Volume 15, Issue 4 , May , 2020 ; Jafarkhani, M ; Salehi, Z ; Mashayekhan, S ; Kowsari Esfahan, R ; Dolatshahi Pirouz, A ; Bonakdar, S ; Shokrgozar, M. A ; Sharif University of Technology
Institute of Physics Publishing
2020
Abstract
Endothelial cell migration is a crucial step in the process of new blood vessel formation - a necessary process to maintain cell viability inside thick tissue constructs. Here, we report a new method for maintaining cell viability and inducing cell migration using a perfused microfluidic platform based on collagen gel and a gradient hydrogel sheet. Due to the helpful role of the extracellular matrix components in cell viability, we developed a hydrogel sheet from decellularized tissue (DT) of the bovine heart and chitosan (CS). The results showed that hydrogel sheets with an optimum weight ratio of CS/DT = 2 possess a porosity of around 75%, a mechanical strength of 23 kPa, and display cell...
Numerical investigation of a stepped planing hull in calm water
, Article Ocean Engineering ; Volume 94 , January , 2015 , Pages 103-110 ; 00298018 (ISSN) ; Ashrafizaadeh, M ; Esfahan, R. K ; Sharif University of Technology
Elsevier Ltd
2015
Abstract
Stepped planing hulls enable the feasibility of running at relatively low Drag-Lift ratio by means of achieving more optimal trim angle at high speeds. Currently, there is no precise method to analyze these hulls over the full range of operating speeds. In this study, a three-dimensional computational fluid dynamics (CFD) model using volume of fluid (VOF) approach is presented for examining the characteristics of a planing hull having one transverse step. A procedure is presented to transform a series of fixed-position simulations into a free to heave and pitch simulation. Resistance, lift, running draft, dynamic trim angle, and wetted area are compared with available experimental data and...
Spiral microchannel with stair-like cross section for size-based particle separation
, Article Microfluidics and Nanofluidics ; Volume 21, Issue 7 , 2017 ; 16134982 (ISSN) ; Kowsari Esfahan, R ; Saidi, M. S ; Firoozbakhsh, K ; Sharif University of Technology
Springer Verlag
2017
Abstract
Particle separation has a variety of applications in biology, chemistry and industry. Among them, circulating tumor cells (CTCs) separation has drawn significant attention to itself due to its high impact on both cancer diagnosis and therapeutics. In recent years, there has been growing interest in using inertial microfluidics to separate micro/nano particles based on their sizes. This technique offers label-free, high-throughput and efficient separation and can be easily fabricated. However, further improvements are needed for potential clinical applications. In this study, a novel inertial separation technique using spiral microchannel having stair-like cross section is introduced. The...
Nanomechanical properties of lipid bilayer: Asymmetric modulation of lateral pressure and surface tension due to protein insertion in one leaflet of a bilayer
, Article Journal of Chemical Physics ; Volume 138, Issue 6 , 2013 ; 00219606 (ISSN) ; Amininasab, M ; Ejtehadi, M. R ; Kowsari, F ; Dastvan, R ; Sharif University of Technology
2013
Abstract
The lipid membranes of living cells form an integral part of biological systems, and the mechanical properties of these membranes play an important role in biophysical investigations. One interesting problem to be evaluated is the effect of protein insertion in one leaflet of a bilayer on the physical properties of lipid membrane. In the present study, an all atom (fine-grained) molecular dynamics simulation is used to investigate the binding of cytotoxin A3 (CTX A3), a cytotoxin from snake venom, to a phosphatidylcholine lipid bilayer. Then, a 5 ms coarse-grained molecular dynamics simulation is carried out to compute the pressure tensor, lateral pressure, surface tension, and first moment...
Erratum: Publishers Note: Nanomechanical properties of lipid bilayer: Asymmetric modulation of lateral pressure and surface tension due to protein insertion in one leaflet of a bilayer (Journal of Chemical Physics (2013)138 (065101))
, Article Journal of Chemical Physics ; Volume 138, Issue 13 , 2013 ; 00219606 (ISSN) ; Amininasab, M ; Ejtehadi, M. R ; Kowsari, F ; Dastvan, R ; Sharif University of Technology
2013
Influence of butyl side chain elimination, tail amine functional addition, and c2 methylation on the dynamics and transport properties of imidazolium-based [Tf2N-] ionic liquids from molecular dynamics simulations
, Article Journal of Chemical and Engineering Data ; Volume 60, Issue 3 , January , 2015 , Pages 551-560 ; 00219568 (ISSN) ; Fakhraee, M ; Sharif University of Technology
American Chemical Society
2015
Abstract
Molecular dynamics simulations of four ionic liquids (ILs) based on the [Tf2N] bis(trifluoromethanesulfonyl)imide anion, and imidazolium cations with different alkyl side chains have been performed. These simulations investigate the influence of butyl side chain elimination, tail amine functional addition, and C2 methylation on the dynamics and transport properties of this family of ionic liquids at 400 K. In our earlier work (J. Chem. Eng. Data, 2014, 59, 2834-2849), a suite of thermodynamic quantities and microscopic structures of these ILs were studied by classical molecular dynamics simulations and ab initio calculations. In this work, the dynamics of the ILs are studied by calculating...
Multiscale molecular dynamics simulation of nanobio membrane in interaction with protein
, Article ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology, NEMB 2013 ; 2013 ; ISBN: 9780791845332 ; Amininasab, M ; Ejtehadi, M ; Kowsari, F ; Sharif University of Technology
2013
Abstract
One of the most important biological components is lipid nanobio membrane. The lipid membranes of alive cells and their mechanical properties play an important role in biophysical investigations. Some proteins affect the shape and properties of the nanobio membrane while interacting with it. In this study a multiscale approach is experienced: first a 100ns all atom (fine-grained) molecular dynamics simulation is done to investigate the binding of CTX A3, a protein from snake venom, to a phosphatidylcholine lipid bilayer, second, a 5 micro seconds coarse-grained molecular dynamics simulation is carried out to compute the pressure tensor, lateral pressure, surface tension, and first moment of...
Optimal working conditions of various city gate stations for power and hydrogen production based on energy and eco-exergy analysis
, Article International Journal of Hydrogen Energy ; Volume 45, Issue 43 , September , 2020 , Pages 22513-22533 ; Deymi Dashtebayaz, M ; Karbasi, K ; Sheikhani, H ; Sharif University of Technology
Elsevier Ltd
2020
Abstract
In this study, the feasibility of producing power and hydrogen from the waste heat of different City Gate Stations (CGSs) is investigated to select the optimal working conditions. A thermodynamic model is developed for a proposed system combined of the CGS station, the Rankin cycle and the extended hydrogen production cycle. Initially, six CGS stations are simulated based on energy, exergy-economic and environmental analysis and then a comparative study is conducted between different stations. The results of numerical modeling show that the Mashhad-old station with 5315 kW and 31.062 ton/year has the highest amount of power and hydrogen production among other stations, respectively. It is...
A molecular dynamics simulation study of nanomechanical properties of asymmetric lipid bilayer
, Article Journal of Membrane Biology ; Volume 246, Issue 1 , 2013 , Pages 67-73 ; 00222631 (ISSN) ; Amininasab, M ; Vali, M ; Ejtehadi, M ; Kowsari, F ; Sharif University of Technology
2013
Abstract
A very important part of the living cells of biological systems is the lipid membrane. The mechanical properties of this membrane play an important role in biophysical studies. Investigation as to how the insertion of additional phospholipids in one leaflet of a bilayer affects the physical properties of the obtained asymmetric lipid membrane is of recent practical interest. In this work a coarse-grained molecular dynamics simulation was carried out in order to compute the pressure tensor, the lateral pressure, the surface tension and the first moment of lateral pressure in each leaflet of such a bilayer. Our simulations indicate that adding more phospholipids into one monolayer results in...
Lithium Isotopes Separation by Electrolysis Amalgam by a Continuous Method
, M.Sc. Thesis Sharif University of Technology ; Outokesh, Mohammad (Supervisor) ; Ahmadi, Javad (Co-Advisor)
Abstract
Lithium has 9 isotopes which two isotopes are stable and remaining isotopes are unstable and have half-life. Lithium stable isotopes include 6Li and 7Li that their abundance is 7.53% and 92.47% respectively. Importance of lighter lithium isotope appears for its small cross section against thermal neutron and producing fusion reactors fuel in nuclear industries. Thermal neutron absorption cross section for 6Li and 7Li are 950 barn and 37 mbarn respectively. Interesting of these isotopes in nuclear industry is due to the large difference in the absorption cross section.6Li compounds implied for tritium producing in coat of nuclear fusion reactor with DT fuel. Following tritium is used in...
Adsorptive behavior of an amberlite anion exchanger resin for uranium (VI) sorption in the presence of sulfate anions
, Article International Journal of Engineering, Transactions B: Applications ; Volume 29, Issue 2 , 2016 , Pages 170-175 ; 1728144X (ISSN) ; Sepehrian, H ; Fasihi, J ; Arabieh, M ; Mahani, M ; Sharif University of Technology
Materials and Energy Research Center
2016
Abstract
Uranium (VI) sorption using an anionic exchanger resin, namely Amberlite IRA910, in the presence of sulfate anions was the subject of current study. Batch sorption experiments were carried out to evaluate the influence of operational parameters such as pH, contact time, initial concentration and existence of various anions (including phosphate, sulfate, chloride, fluoride, and nitrate) in the solution on Amberlite IRA910 sorption behavior. Experiments revealed that uranium adsorption was fulfiled at pH>3 and 50 min to amount of 80%. Kinetics study revealed that the pseudo-second-order model showed better curve-fitting regression of the experimental data than the pseudo-first-order one....
Study on Momentary and Overall Separation Factors in Lithium Isotopes Separation by Batch Electrolysis
, M.Sc. Thesis Sharif University of Technology ; Otukesh, Mohammad (Supervisor) ; Ahmadi, Javad (Supervisor) ; Kowsari, Mohammad Reza ($item.subfieldsMap.e)
Abstract
Lithium has two stable isotopes, 6Li and 7Li. Abundance of these isotopes are 7.53% and 92.43% respectively. Each isotope has an important role in nuclear industry. For example, 6Li compounds is used in production of tritium in nuclear fusion reactors coated with DT fuel and as fuel in nuclear fusion reactors that operate with laser inertial confinement method applied. 7LiOH is used to adjust the pH of the fluid coolant in light water reactors and also in Breeding Reactors. Lithium isotope separation in different ways so far been brought into operation. The other aspect to this work, it can be both continuous and batch for action. Lithium isotopes for the first time by electrolysis using...
Network vulnerability analysis through vulnerability take-grant model (VTG)
, Article 7th International Conference on Information and Communications Security, ICICS 2005, Beijing, 10 December 2005 through 13 December 2005 ; Volume 3783 LNCS , 2005 , Pages 256-268 ; 03029743 (ISSN); 3540309349 (ISBN); 9783540309345 (ISBN) ; Sadoddin, R ; Jalili, R ; Zakeri, R ; Omidian, A. R ; Sharif University of Technology
2005
Abstract
Modeling and analysis of information system vulnerabilities helps us to predict possible attacks to networks using the network configuration and vulnerabilities information. As a fact, exploiting most of vulnerabilities result in access rights alteration. In this paper, we propose a new vulnerability analysis method based on the Take-Grant protection model. We extend the initial Take-Grant model to address the notion of vulnerabilities and introduce the vulnerabilities rewriting rules to specify how the protection state of the system can be changed by exploiting vulnerabilities. Our analysis is based on a bounded polynomial algorithm, which generates the closure of the Take-Grant graph...
Sequence dependence of the binding energy in chaperone-driven polymer translocation through a nanopore
, Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 83, Issue 1 , January , 2011 ; 15393755 (ISSN) ; Ejtehadi, M. R ; Metzler, R ; Sharif University of Technology
2011
Abstract
We study the translocation of stiff polymers through a nanopore, driven by the chemical-potential gradient exerted by binding proteins (chaperones) on the trans side of the pore. Bound chaperones prevent backsliding through the pore and, therefore, partially rectify the polymer passage. We show that the sequence of chain monomers with different binding affinity for the chaperones significantly affects the translocation dynamics. In particular, we investigate the effect of the nearest-neighbor adjacency probability of the two monomer types. Depending on the magnitude of the involved binding energies, the translocation speed may either increase or decrease with the adjacency probability. We...
First passage time distribution of chaperone driven polymer translocation through a nanopore: Homopolymer and heteropolymer cases
, Article Journal of Chemical Physics ; Volume 135, Issue 24 , 2011 ; 00219606 (ISSN) ; Metzler, R ; Ejtehadi, M. R ; Sharif University of Technology
2011
Abstract
Combining the advection-diffusion equation approach with Monte Carlo simulations we study chaperone driven polymer translocation of a stiff polymer through a nanopore. We demonstrate that the probability density function of first passage times across the pore depends solely on the Péclet number, a dimensionless parameter comparing drift strength and diffusivity. Moreover it is shown that the characteristic exponent in the power-law dependence of the translocation time on the chain length, a function of the chaperone-polymer binding energy, the chaperone concentration, and the chain length, is also effectively determined by the Péclet number. We investigate the effect of the chaperone size on...
Reply: Abedpour, asgari, and tabar
, Article Physical Review Letters ; Volume 106, Issue 20 , 2011 ; 00319007 (ISSN) ; Asgari, R ; Tabar, M. R. R ; Sharif University of Technology
2011
Irreversibility in response to forces acting on graphene sheets
, Article Physical Review Letters ; Volume 104, Issue 19 , May , 2010 ; 00319007 (ISSN) ; Asgari, R ; Tabar, M. R. R ; Sharif University of Technology
2010
Abstract
The amount of rippling in graphene sheets is related to the interactions with the substrate or with the suspending structure. Here, we report on an irreversibility in the response to forces that act on suspended graphene sheets. This may explain why one always observes a ripple structure on suspended graphene. We show that a compression-relaxation mechanism produces static ripples on graphene sheets and determine a peculiar temperature Tc, such that for T
Analysis of design goals of cryptography algorithms based on different components
, Article Indonesian Journal of Electrical Engineering and Computer Science ; Volume 23, Issue 1 , 2021 , Pages 540-548 ; 25024752 (ISSN) ; Aref, M. R ; Khorshiddoust, R. R ; Sharif University of Technology
Institute of Advanced Engineering and Science
2021
Abstract
Cryptography algorithms are a fundamental part of a cryptographic system that is designed and implemented to increase information security. They are the center of attention of experts in the information technology domains. Although the cryptography algorithms are implemented to attain the goals such as confidentially, integrity, and authenticity of designing, but other matters that must be noticed by designers include speed, resource consumption, reliability, flexibility, usage type, and so on. For the useful allocation of hardware, software, and human resources, it is important to identify the role of each of the factors influencing the design of cryptographic algorithms to invest in the...
Conservation of statistical results under the reduction of pair-contact interactions to solvation interactions
, Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 72, Issue 6 , 2005 ; 15393755 (ISSN) ; Farzami, R. R ; Ejtehadi, M. R ; Sharif University of Technology
2005
Abstract
We show that the hydrophobicity of sequences is the leading term in Miyazawa-Jernigan interactions. Being the source of additive (solvation) terms in pair-contact interactions, they were used to reduce the energy parameters while resulting in a clear vector manipulation of energy. The reduced (additive) potential performs considerably successful in predicting the statistical properties of arbitrary structures. The evaluated designabilities of the structures by both models are highly correlated. Suggesting geometrically nondegenerate vectors (structures) as proteinlike structures, the additive model is a powerful tool for protein design. Moreover, a crossing point in the log-linear diagram of...