Loading...
Search for: labbaf--farzaneh
0.12 seconds

    Drug Synergy Prediction on Diverse Cancer Cell-Lines Using Deep Learning

    , M.Sc. Thesis Sharif University of Technology Labbaf, Farzaneh (Author) ; Hossein Khalaj, Babak (Supervisor)
    Abstract
    Despite significant progress in cancer treatment, drug resistance remains a major challenge. Synergistic drug combinations offer a promising approach to overcome drug resistance and reduce side effects. Still, despite high-throughput testing technologies, existing drug combination databases suffer from biases and a lack of diversity in tested cancer cell lines, which challenges the prediction of drug response on novel cell targets. To address this critical need, we designed a two-level deep learning method that uses large-scale gene expression datasets to estimate the score and synergy of drug compounds on a wide variety of cancer cell lines. Our model includes an auto-encoder that train on... 

    Design and Hardware Implementation of Real-Time Simulator for Power Electronic Systems

    , M.Sc. Thesis Sharif University of Technology Labbaf, Mohamad (Author) ; Hashemi, Matin (Supervisor) ; Parniani, Mostafa (Co-Advisor)
    Abstract
    Real-time simulators are playing a critical role in the design of power electronic systems. Using real-time simulator enables designers to reduce the time and cost of design by employing hardware-in-the-loop technique. In addition, this simulator can potentially reduce the risks which are associated with performing tests on actual systems. In this thesis, a real-time simulator is designed and implemented for power electronic applications. Concerning the fact that power switches are one of the most important elements in this simulator, an ideal switch model with conduction resistor and RC snubber circuit is used. This model is more accurate as compared to other models in the... 

    A Matrix-inversion technique for FPGA-based real-time EMT simulation of power converters

    , Article IEEE Transactions on Industrial Electronics ; Volume 66, Issue 2 , 2019 , Pages 1224-1234 ; 02780046 (ISSN) Hadizadeh, A ; Hashemi, M ; Labbaf, M ; Parniani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    This paper proposes a novel FPGA-based matrix-inversion technique that is specifically tailored and optimized for real-time electromagnetic transients simulation of power electronic converters with high switching frequency. This is the first reported solution that is capable of solving the real-time equations related to using ideal switch model and the associated circuitry in very small time-steps (e.g., an average of 36 ns in a three-phase back-to-back converter case study), without requiring large amount of memory, being limited to small number of switches, adding parasitic elements, or depending on a priori knowledge of the circuit operation or switching strategy. The accuracy of the... 

    Tuning of novel fractional order fuzzy PID controller for automatic voltage regulator using grasshopper optimization algorithm

    , Article Majlesi Journal of Electrical Engineering ; Volume 15, Issue 2 , 2021 , Pages 39-45 ; 2345377X (ISSN) Labbaf Khaniki, M. A ; Hadi, M. B ; Manthouri, M ; Sharif University of Technology
    Islamic Azad University  2021
    Abstract
    One of the essential pieces of equipment in the power system is the Automatic Voltage Regulator (AVR) or synchronous generator excitation. The system's goal is to maintain the terminal voltage of the synchronous generator at the desired level. AVR is inherently uncertain. Hence, the proposed controller should be able to handle the problem. In this paper, Fractional Order Fuzzy PID (FOFPID) controller has been employed to control the system. To enhance the controller's performance, the Grasshopper Optimization Algorithm (GOA) is used to tune the controller's parameters. Unlike other methods, the FOFPID controller gains are not constant and alter in different operating conditions. The... 

    Switched Parasitic Antennas for the use in Wireless Communications

    , M.Sc. Thesis Sharif University of Technology Ahmady, Hesam (Author) ; Farzaneh, Forouhar (Supervisor)
    Abstract
    Switched Parasitic Antennas, as a kind of Smart Antennas, have several applications in Telecommunications and Radar systems. In the realm of wireless applications, these antennas provide the system with higher capacity owning to the fact that they are able to direct the main beam toward the desirable user. Moreover, they can be used to degrade the adverse effects of Multi-path. Multi-path reduction not only benefits mobile communication but applies to many applications of radar systems. These antennas, in addition, can be utilized in Direction Finding. In the case of other types of Smart Antennas, the above mentioned benefits can be achieved with high costs due to the fact that there are a... 

    Analysis and Simulation of Mars Rover Curiosity in the X and UHF Bands

    , M.Sc. Thesis Sharif University of Technology Torabi, Masoud (Author) ; Forouhar, Farzaneh (Supervisor)
    Abstract
    Mars rover Curiosity is a mobile scientific laboratory which it’s mission is to assess the biological potential of the landing site and characterize the geology of the landing region. This rover communicate to a Mars orbiter named MRO satellite in the UHF band which relies the signals to the Earth stations. Also this rover communicate to the Earth stations directly in the X band. In this thesis, we determine the technical characteristics of stations and simulate Earth-Mars radio links. So we calculate :
    1. determine the technical characteristics of Earth stations
    2. determine the technical characteristics of satellite and Curiosity
    3. Earth-Mars orbital position in the... 

    , M.Sc. Thesis Sharif University of Technology Razieh, Azad (Author) ; Farzaneh, Forouhar (Supervisor)
    Abstract
    In recent years due to the advances in semiconductor technology and the ability to implement small-scale manufacturing, communication at 60 GHz band receive more attention than ever has been. The use of this frequency band is not only about 7-9 GHz unlicensed broadband access provided, but getting smaller devices make it possible to use multiple antennas at the transmitter and receiver, and thus taking advantage of multiple input – multiple output systems. Antennas used in these systems should have features such as small size , low weight, high gain and bandwidth and also they should keep their high efficiency and gainat high frequency range (about a few GHz ). To achieve these features... 

    Design and Simulation of Smart Patch Antenna Array in 2.4 GHz band

    , M.Sc. Thesis Sharif University of Technology Hosseini, Mahdi (Author) ; Farzaneh, Forouhar (Supervisor)
    Abstract
    Over the past few years , demand for wireless communication services have grown at a formidable rate. As such we need to find new ways to support more and more wireless users in a confined space. this means that the capacity of networks should be significantly increased to overcome formidable rate of subscribers growth. That is why the smart antennas have become very popular in communication systems. Smart antennas are a kind of adaptive antenna arrays with smart signal processing algorithms used to find direction of arrival(DOA) of the signal, and use it to calculate suitable weights to direct the antenna beam on the desired user and nulling interferences. In this thesis, DOA estimation... 

    Evaluation of Phase Comparison DOA Estimation Methods in Multipath Environments for Millimeter Waves

    , M.Sc. Thesis Sharif University of Technology Karimi, Parisa (Author) ; Farzaneh, Forouhar (Supervisor)
    Abstract
    The main objective of this project is to discuss a DOA estimation system performance in a multipath environment. For this goal, first the basics of the DOA Estimation systems are discussed. Evaluation of different types of algorithms and choosing an appropriate one is an important step in this regard. Moreover the comparison of different array structures is necessary to choose the appropriate one. The major part of the project has been dedicated to discussion of multipath phenomenon as a major source of error in DOA estimation and studying the multipath mitigation algorithms to eliminate the aforementioned error. A model based on the concept of Bistatic Radar Cross Section is proposed to... 

    Evaluation and Improvement of DOA Estimation Methods in Dipole Antenna Arrays with Different Geometries

    , M.Sc. Thesis Sharif University of Technology Sasannia, Zahra (Author) ; Farzaneh, Forouhar (Supervisor)
    Abstract
    In this thesis, some of the well-known DOA algorithms namely Bartlett, Capon, Linear prediction, Maximum Entropy, Pisarenko harmonic decomposition, Minimum norm and MUSIC are analyzed and compared with each other in the identical situations using a uniform linear array. Then based on these comparisons, the appropriate algorithm is selected. In the next step since the linear arrays can't estimate both angles of arrival (Azimuth and Elevation) simultaneously, two dimensional (2D) geometries are introduced and are also compared to each other. Then one of them (circular array) is selected for dipole antenna arrays. The performance of the selected array is evaluated using isotropic elements for... 

    Design and Simulation of mmWave Antenna Arrays with Novel 3D Geometries for 5G Wireless Applications

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Nima (Author) ; Farzaneh, Forouhar (Supervisor)
    Abstract
    In the new generations of mobile communication systems, smart antennas are used to achieve higher capacities. Since these systems have the ability to form a radiation pattern where the desired signal is received with minimum distortion and inteferers are received with a significant attenuation therefore their application makes it possible to have a large signal to inteference ratio. In addition by setting the main beam direction towards the desired signal, it is conceivable to realize the the communication with a lower power. The optimal methods for angle-of-arrival estimation and beamforming in one and two dimensional structures has been studied in the literature, but the three dimensional... 

    Analysis and Design of a Multiple-Input Multiple-output (MIMO) Transmitter in the 60 GHz Band with a Beam Steering Capability Using All-digital Phase-locked Loop Chip

    , Ph.D. Dissertation Sharif University of Technology Salarpour, Mahdi (Author) ; Farzaneh, Forouhar (Supervisor)
    Abstract
    Multiple-Input Multiple-Output (MIMO) communications at millimeter-wave (mm-wave) frequencies (e.g., in the 60 GHz band) is a modern technology recently considered for various applications, such as emerging 5G services for multi-user MIMO (MU-MIMO) and high-resolution frequency-modulated continuous wave (FMCW) MIMO radars to support multi-gigabit throughputs in short-range environments via spatial multiplexing-diversity. Nevertheless, the impairments of communication channels in this frequency band, including significant propagation loss and severe blockage effect, are quite challenging to allow an efficient communication link. Hence, beamforming/beam steering can play a crucial role in 60... 

    Wideband Microwave Radio Direction Finding Based on Phase Interferometry Method for Two and Three Dimensional Arrays with Minimum Number of Antennas

    , Ph.D. Dissertation Sharif University of Technology Mollai, Sajjad (Author) ; Farzaneh, Forouhar (Supervisor)
    Abstract
    The interferometer method, as one of the most accurate schemes for wideband direction finding (DF), is used. The interferometer method has various algorithms which can be implemented depending on the required specifications. The advantages and disadvantages of these algorithms have been evaluated and the appropriate algorithm for a general practical case in view of the ambiguity resolution is proposed. The receivers’ channel phase tracking error is of significant concern in practice, in interferometric DF systems. The induced error due to channels phase tracking error is estimated. Furthermore the use of physically realizable antennas, achievement of high accuracy, minimum number of antennas... 

    Array Geometry Based Beamforming in Smart Antennas Intended for Capacity Improvment in Wireless Systems

    , Ph.D. Dissertation Sharif University of Technology Poormohammad, Sarah (Author) ; Farzaneh, Forouhar (Supervisor)
    Abstract
    Novel two dimensional and three dimensional antenna array geometries for smart antenna application are introduced. MMSE beamforming algorithm, using these arrays, in presence of signal, noise and interferences is implemented. Beamforming approach is used for every type of array assuming uniform and log-normal distributions for the interference amplitudes. Equal volume cylindrical or prism type arrays with circular, hexagonal, triangular, square and star cross sections with equal number of elements are considered for comparison. Novel geometries consisting of rotated cross sections are studied as well. In each case the relative SIR’s are compared in these geometries, showing that the... 

    Reliable and Uninterrupted Telecommunication link between Earth and Mars

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Jamil (Author) ; Farzaneh, Frohar (Supervisor)
    Abstract
    For a manned space mission to Mars, one of the essential requirements is to have a two-way, uninterrupted communication link.Three Mars Synchronous Satellites (MSS), are proposed to ensure the telecommunication link in all locations on Mars (except its poles) at any time. At any given moment, at least two of the three satellites (MSS) is connected to the Deep Space Communication Complex (DSCC) (NASA Earth Station). But the use of MSS satellites is not adequate during the periods of solar conjunction and solar opposition. Due to the fact that the sun blocks or weakens the receiver signal, a solar orbiting satellite (SOS) is proposed to maintain the communication link at this condition.... 

    Evaluation of the optimal performance of passenger vehicle by integrated energy-environment-economic modeling

    , Article International Journal of Environmental Science and Technology ; Volume 4, Issue 2 , 2007 , Pages 189-196 ; 17351472 (ISSN) Farzaneh, H ; Saboohi, Y ; Sharif University of Technology
    CEERS  2007
    Abstract
    Analysis of multi dimensional interactions of flow of energy in passenger vehicle is a complex task that necessitates development and utilization of analytical tools. Development of analytical tools with high complexity is usually based on conclusions of many concepts and theories from different scientific disciplines. In this approach, Passenger vehicle is supposed to be organized in the form of a firm and appears in the market that oriented towards establishing an effective energy supply system which may be identified as delivering the product (person kilometer or tone kilometer) with minimum operation costs. To this end, an optimization model named power software founded on theory of firm... 

    Model for analysis of energy flow from tank-to-wheel in a passenger vehicle

    , Article 2005 IEEE Vehicle Power and Propulsion Conference, VPPC, Chicago, IL, 7 September 2005 through 9 September 2005 ; Volume 2005 , 2005 , Pages 150-153 ; 0780392809 (ISBN); 9780780392809 (ISBN) Farzaneh, H ; Saboohi, Y ; Sharif University of Technology
    2005
    Abstract
    Analysis of multi dimensional interactions of flow of energy in passenger vehicle is a complex task that necessitates development and utilization of analytical tools. Development of analytical tools with high complexity is usually based on conclusions of many concepts and theories from different scientific disciplines. In this approach, Passenger vehicle is supposed to be organized in the form of a firm and appears in the market that oriented towards establishing an effective energy supply system which may be identified as delivering the product (person per mileage removable) with minimum operation costs. To this end, an optimization model named POWER software founded on theory of firm of... 

    Software of passenger vehicle optimal work and energy recovery (POWER)

    , Article 12th International Conference on Urban Transport and the Environment in the 21st Century, URBAN TRANSPORT 2006, UT06, Prague, 12 July 2006 through 14 July 2006 ; Volume 89 , 2006 , Pages 691-699 ; 17433509 (ISSN); 1845641795 (ISBN); 9781845641795 (ISBN) Farzaneh, H ; Saboohi, Y ; Sharif University of Technology
    2006
    Abstract
    In our investigation, the model of optimal energy flow in a passenger vehicle has been founded on the theory of firm microeconomics. Based on this theory, the car owner tries to minimize the total cost of the system (including the cost of time of the traveller) subject to the satisfaction of the required transport services and technological, economical, environmental and institutional constraints. The aforementioned model has been developed using a technique of mathematical programming. The model depicts the behaviour of a nonlinear system and it includes many nonlinear functions in the objective function and in the constraints. Solving the large nonlinear set of constraints and identifying... 

    Analysis and Design of Dual Polarization Vivaldi Antenna Array for 6-18GHz Range

    , M.Sc. Thesis Sharif University of Technology Ghayoori, Saeed (Author) ; Farzaneh, Forouhar (Supervisor)
    Abstract
    The main objective of this project is to analysis and design of ultra ultra wideband dual polarization vivaldi antenna array for electronic support measure system. In modern satellite communication and radar systems, antenna are required to have the characteristics of both ultra wide band and dual-polarization so as to satisfy various needs such as expanding the information volume, improving the quality of receiving information and increasing the ratio of bandwidth utilization. For this reason we first design a single element of vivaldi antenna for 6-18GHz range and then with design of SMA connector shown that result with and without SMA is same. In the next step we design(under... 

    Design and Realization of a Microstrip Antenna Array for Both Automotive Radar Application and 5G Communications at 78/28 GHZ Band

    , M.Sc. Thesis Sharif University of Technology Ayatollahi, Hamed (Author) ; Farzaneh, Forouhar (Supervisor)
    Abstract
    With the advancement of automotive technology, the use of automotive radar for collision avoidance and pedestrian detection has been increasingly become universal. In this thesis, our goal is to design a dual-band radar antenna for obstacle detection and a 5G omnidirectional antenna for communication purposes in self-driving cars. We will first introduce the automotive radar and its operation. Next, the FMCW radar, which is simultaneously effective for speed, distance and direction estimation is introduced. Then we introduce the leaky wave antenna as the frequency scanning antenna. This is realized in an SIW waveguide technology. The main issue in this part is the achievement of high...