Loading...
Search for: lori--m
0.135 seconds

    Fluid flow and heat transfer in microchannel with and without porous medium under constant heat flux

    , Article Sadhana - Academy Proceedings in Engineering Sciences ; Volume 47, Issue 2 , 2022 ; 02562499 (ISSN) Shamsoddini Lori, M ; Sharif University of Technology
    Springer  2022
    Abstract
    In this study, the heat transfer and fluid flow characteristics of a three-dimensional microchannel that is partially filled with a layer of porous medium at its bottom solid wall is investigated. The microchannel is consisted of a clear fluid flow region, solid walls and a porous layer that is attached to its solid bottom wall. A constant heat flux is applied to the bottom wall of the microchannel. Darcy-Brinkman-Forchheimer model is used to simulate the fluid flow inside the porous medium. The novelty of this work is to investigate thoroughly and precisely the effect of using of porous layer configuration in MCHSs on hydraulic and thermal performances. The effect of porous layer thickness,... 

    Heat transfer and fluid flow analysis of microchannel heat sinks with periodic vertical porous ribs

    , Article Applied Thermal Engineering ; Volume 205 , 2022 ; 13594311 (ISSN) Lori, M.S ; Vafai, K ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this study, a detailed numerical analysis of the fluid flow and heat transfer of a three-dimensional microchannel is performed to evaluate the effect of using periodic vertical porous and solid ribs with various geometrical shapes, including rectangular, elliptical, isosceles triangular, backward triangular and forward triangular on the walls of this microchannel. Darcy-Brinkman-Forchheimer equations are used to model transport through the porous medium. The results for microchannels with solid ribs and with porous ribs are compared to each other. It is found that at the lowest studied inlet velocity (uin=0.25m/s), for the rib heights of Hr=0.025mm,0.05mmand0.07mm, the average Nusselt... 

    Thermal and hydraulic performance of rectangular microchannel heat sinks with trapezoidal porous configuration

    , Article Numerical Heat Transfer; Part A: Applications ; Volume 81, Issue 3-6 , 2022 , Pages 72-93 ; 10407782 (ISSN) Lori, M ; Vafai, K ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In this article, the thermal and hydraulic capacity of a rectangular microchannel heat sink with different trapezoidal porous configuration’s inlet heights (Formula presented.) and outlet heights (Formula presented.) are examined. A three-dimensional model is used for microchannels with miscellaneous trapezoidal porous configuration’s inlet and outlet heights, and the laminar fluid flow and conjugate heat transfer equations are numerically solved. Darcy-Brinkmen-Forchheimer equation is utilized for transport through the porous region. For microchannels with miscellaneous porous distribution’s inlet and outlet heights, the Nusselt number, pressure drop and figure of merit (FOM), a criterion... 

    Frequency characteristics of a GPL-reinforced composite microdisk coupled with a piezoelectric layer

    , Article European Physical Journal Plus ; Volume 135, Issue 2 , January , 2020 Shamsaddini lori, E ; Ebrahimi, F ; Supeni, E. E. B ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Springer  2020
    Abstract
    This is the first research on the frequency analysis of a graphene nanoplatelet composite (GPLRC) microdisk in the framework of a numerical-based generalized differential quadrature method. The stresses and strains are obtained using the higher-order shear deformable theory. Rule of mixture is employed to obtain varying mass density, thermal expansion, and Poisson’s ratio, while module of elasticity is computed by modified Halpin–Tsai model. Governing equations and boundary conditions of the GPLRC microdisk covered with piezoelectric layer are obtained by implementing Hamilton’s principle. Regarding perfect bonding between the piezoelectric layer and core, the compatibility conditions are... 

    The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer

    , Article Engineering with Computers ; 2020 Shamsaddini Lori, E ; Ebrahimi, F ; Elianddy Bin Supeni, E ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Springer  2020
    Abstract
    In this research, electrically characteristics of a graphene nanoplatelet (GPL)-reinforced composite (GPLRC) microdisk are explored using generalized differential quadrature method. Also, the current microstructure is coupled with a piezoelectric actuator (PIAC). The extended form of Halpin–Tsai micromechanics is used to acquire the elasticity of the structure, whereas the variation of thermal expansion, Poisson’s ratio, and density through the thickness direction is determined by the rule of mixtures. Hamilton’s principle is implemented to establish governing equations and associated boundary conditions of the GPLRC microdisk joint with PIAC. The compatibility conditions are satisfied by... 

    The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer

    , Article Engineering with Computers ; Volume 37, Issue 4 , 2021 , Pages 3489-3508 ; 01770667 (ISSN) Shamsaddini Lori, E ; Ebrahimi, F ; Elianddy Bin Supeni, E ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this research, electrically characteristics of a graphene nanoplatelet (GPL)-reinforced composite (GPLRC) microdisk are explored using generalized differential quadrature method. Also, the current microstructure is coupled with a piezoelectric actuator (PIAC). The extended form of Halpin–Tsai micromechanics is used to acquire the elasticity of the structure, whereas the variation of thermal expansion, Poisson’s ratio, and density through the thickness direction is determined by the rule of mixtures. Hamilton’s principle is implemented to establish governing equations and associated boundary conditions of the GPLRC microdisk joint with PIAC. The compatibility conditions are satisfied by... 

    Analysis of Heat Transfer and Fluid Flow in Partial Porous Microchannel

    , M.Sc. Thesis Sharif University of Technology Shamsoddini Lori, Mohammad (Author) ; Nouri Brorujerdi, Ali (Supervisor)
    Abstract
    In this study, heat transfer and fluid flow inside a rectangular microchannel with partial porous media is simulated numerically. Darcy-Brinkman-Forchheimer equations are used to model the porous media. The effect of height of porous media, permeability (Darcy number), porosity and inlet velocity (Reynolds number) on Hydrodynamic and heat transfer performance are examined. At different values of height of porous media 0.2, 0.4, 0.6, 0.8, and 1 mm the Nusselt number of microchannel are 1.72, 1.78, 1.86, 1.94, and 2.02 compared to the microchannel without porous media. And the porous drop are 1.09, 1.2, 1.49, 1.76, and 2.15 compared to the microchannel without porous media. And FOM are 1.78,... 

    Probability of missed detection as a criterion for receiver placement in MIMO PCL

    , Article IEEE National Radar Conference - Proceedings, 7 May 2012 through 11 May 2012, Atlanta, GA ; 2012 , Pages 0924-0927 ; 10975659 (ISSN) ; 9781467306584 (ISBN) Majd, M. N ; Chitgarha, M. M ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
    IEEE  2012
    Abstract
    Using multiple antennas at the transmit and receive sides of a passive radar brings both the benefits of MIMO radar and passive radar. However one of the obstacles arisen in such configuration is the receive antennas placement in proper positions so that the radar performance is improved. Here we just consider the case of positioning one receiver among multiple illuminators of opportunity. Indeed it is a start for the solution of optimizing the geometry of the multiple receivers in a passive radar  

    An efficient method for the ring opening of epoxides with aromatic amines by Sb(III) chloride under microwave irradiation

    , Article Journal of Chemical Research ; Issue 4 , 2008 , Pages 220-221 ; 03082342 (ISSN) Ghazanfari, D ; Hashemi, M. M ; Mottaghi, M. M ; Foroughi, M. M ; Sharif University of Technology
    2008
    Abstract
    SbCl3 supported on montmorillonite K-10 is an efficient catalyst for the ring opening of epoxides with aromatic amines under solvent-free conditions and microwave irradiation to give the corresponding b-amino alcohols in high yields with high regioselectivity  

    Resource allocation for uav-enabled integrated sensing and communication (isac) via multi-objective optimization

    , Article ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings ; Volume 2023-June , 2023 ; 15206149 (ISSN); 978-172816327-7 (ISBN) Rezaei, O ; Naghsh, M. M ; Karbasi, M ; Nayebi, M. M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2023
    Abstract
    In this paper, we consider an integrated sensing and communication (ISAC) system with wireless power transfer (WPT) where an unmanned aerial vehicle (UAV)-based radar serves a group of energy-limited communication users in addition to its sensing functionality. In this architecture, the radar senses the environment in phase 1 (namely sensing phase) and mean-while, the communications users (nodes) harvest and store the energy from the radar transmit signal. The stored energy is then used for information transmission from the nodes to UAV in phase 2, i.e., uplink phase. Performance of the radar system depends on the transmit signal as well as the receive filter; the energy of the transmit... 

    MIMO radar signal design to improve the MIMO ambiguity function via maximizing its peak

    , Article Signal Processing ; Volume 118 , 2016 , Pages 139-152 ; 01651684 (ISSN) Chitgarha, M. M ; Radmard, M ; Nazari Majd, M ; Karbasi, S. M ; Nayebi, M. M ; Sharif University of Technology
    Elsevier  2016
    Abstract
    One of the important obstacles in MIMO (Multiple Input Multiple Output) radars is the issue of designing proper transmit signals. Indeed, the capability of signal design is a significant advantage in MIMO radars, through which, the system can achieve much better performance. Many different aspects of this performance improvement have been considered yet, and the transmit signals have been designed to attain such goal, e.g., getting higher SNR or better detector's performance at the receiver. However, an important tool for evaluating the radar's performance is its ambiguity function. In this paper, we consider the problem of transmit signal design, in order to optimize the ambiguity function... 

    Detection-localization tradeoff in MIMO radars

    , Article Radioengineering ; Volume 26, Issue 2 , 2017 , Pages 581-587 ; 12102512 (ISSN) Nazari Majd, M ; Radmard, M ; Chitgarha, M. M ; Bastani, M. H ; Nayebi, M. M ; Sharif University of Technology
    2017
    Abstract
    Two gains play key roles in recently developed MIMO wireless communication systems: "spatial diversity" gain and "spatial multiplexing" gain. The diversity gain refers to the capability to decrease the error rate of the MIMO channel, while the multiplexing gain implicitly refers to the amount of increase in the capacity of the MIMO channel. It has been shown that there is a fundamental tradeoff between these two types of gains, meaning interplay between increasing reliability (via an increase in the diversity gain) and increasing data rate (via an increase in the multiplexing gain). On the other hand, recently, MIMO radars have attracted much attention for their superior ability to enhance... 

    Antenna placement and power allocation optimization in MIMO detection

    , Article IEEE Transactions on Aerospace and Electronic Systems ; Vol. 50, Issue 2 , April , 2014 , pp. 1468-1478 Radmard, M ; Chitgarha, M. M ; Majd, M. N ; Nayebi, M. M ; Sharif University of Technology
    2014
    Abstract
    It is a well known fact that using multiple antennas at transmit and receive sides improves the detection performance. However, in such multiple-input multiple-output (MIMO) configuration, proper positioning of transmitters and receivers is a big challenge that can have significant influence on the performance of the overall system. In addition, determining the power of each transmitter under a total power constraint is a problem that should be solved in order to enhance the performance and coverage of such a system. In this paper, we design the Neyman-Pearson detector under the Rayleigh scatter model and use it to introduce a criterion for the antenna placement at both transmit and receive... 

    Ambiguity function of MIMO radar with widely separated antennas

    , Article Proceedings International Radar Symposium ; 16 -18 June , 2014 ; ISSN: 21555753 Radmard, M ; Chitgarha, M. M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
    2014
    Abstract
    There has been much interest, recently, towards exploiting the Multiple-Input Multiple-Output (MIMO) technique in radar. It is shown that using multiple antennas at transmit and receive sides can improve the performance of the system. However, in order to analyze the system's performance, its ambiguity function, i.e. the ambiguity function of a MIMO radar, is needed to be defined. In this paper, beginning from the information theoretic definitions, we derive such function, specifically for a MIMO radar with widely separated antennas  

    Choosing the position of the receiver in a MISO passive radar system

    , Article European Microwave Week 2012: "Space for Microwaves", EuMW 2012, Conference Proceedings - 9th European Radar Conference, EuRAD 2012 ; 2012 , Pages 318-321 ; 9782874870293 (ISBN) Chitgarha, M. M ; Majd, M. N ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
    2012
    Abstract
    By combining the two ideas of MIMO (Multiple Input Multiple Output) and PCL (Passive Coherent Location) in radar, one can achieve the advantages of both recently developed techniques simultaneously. While using multiple antennas at the receive side provides a spatial diversity of the object to be detected, using multiple illuminators of opportunity, most importantly, makes the radar covert to the interceptors. One obstacle in such MIMO configuration is choosing the positions of the receive antennas. In this paper, after analyzing the Neyman-Pearson detector for the DVB-T based PCL, we introduce the probability of missed detection as a criterion to place the receive antenna. Here, we only... 

    Adaptive filtering techniques in passive radar

    , Article Proceedings International Radar Symposium, Dresden ; Volume 2 , June , 2013 , Pages 1067-1078 ; 21555753 (ISSN) ; 9783954042234 (ISBN) Chitgarha, M. M ; Radmard, M ; Majd, M. N ; Nayebi, M. M ; Sharif University of Technology
    2013
    Abstract
    One of the most important obstacles in passive radar applications is removing the direct signal from the target channel. Otherwise, week echoes from the targets in the target channel would be ignored due to the limited dynamic range of the system. One of the most effective techniques in this field is using adaptive filters. In this paper various adaptive filters are introduced and their performances are shown and compared  

    Ambiguity function based receiver placement in multi-site radar

    , Article 2016 CIE International Conference on Radar, RADAR 2016, 10 October 2016 through 13 October 2016 ; 2017 ; 9781509048281 (ISBN) Radmard, M ; Chitgarha, M. M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
    2017
    Abstract
    It has been shown that using multiple antennas in a radar system improves the performance considerably, since multiple target echoes are received from different aspect angles of the target. In this way, the target detection is improved. However, when using multiple antennas, some problems, such as designing the transmit signals, synchronization, etc. emerge that should be solved. One of such problems is the receiver placement. Receiver placement deals with choosing a proper position for the receive antenna in order to optimize the whole system's performance. In this paper, a receiver placement procedure based on improving the radar ambiguity function is proposed for the case of a multisite... 

    Improving MIMO radar's performance through receivers' positioning

    , Article IET Signal Processing ; Volume 11, Issue 5 , 2017 , Pages 622-630 ; 17519675 (ISSN) Chitgarha, M. M ; Radmard, M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
    Institution of Engineering and Technology  2017
    Abstract
    By employing the MIMO (multiple-input-multiple-output) technology in radar, some new problems emerged, that, in order to benefit the MIMO gains in radar, it was necessary to solve them suitably. One of such obstacles is determining the positions of receive antennas in a MIMO radar system with widely separated antennas (WS MIMO radar), since it is shown that the antennas' positions affect the whole system's performance considerably. In this study, a proper receivers' positioning procedure is proposed. To do this end, four criteria are developed based on the proposed MIMO detector and the MIMO ambiguity function. The simulations verify that the proposed positioning procedure improves the... 

    Silylation of hydroxy groups with HMDS under microwave irradiation and solvent-free conditions

    , Article Phosphorus, Sulfur and Silicon and Related Elements ; Volume 177, Issue 2 , 2002 , Pages 289-292 ; 10426507 (ISSN) Mojtahedi, M. M ; Saidi, M. R ; Bolourtchian, M ; Heravi, M. M ; Sharif University of Technology
    2002
    Abstract
    Phenols and alcohols are silylated with hexamethyldisilazane (HMDS) under microwave irradiation in solvent-free condition in good to excellent yields  

    Dynamic analysis of carbon nanotubes under electrostatic actuation using modified couple stress theory

    , Article Acta Mechanica ; Vol. 225, Issue 6 , June , 2014 , pp. 1523-1535 ; Online ISSN: 1619-6937 Fakhrabadi, M. M. S ; Rastgoo, A ; Ahmadian, M. T ; Mashhadi, M. M ; Sharif University of Technology
    2014
    Abstract
    Modified couple stress theory is a size-dependent theorem capturing the micro/nanoscale effects influencing the mechanical behaviors of the micro- and nanostructures. In this paper, it is applied to investigate the nonlinear vibration of carbon nanotubes under step DC voltage. The vibration, natural frequencies and dynamic pull-in characteristics of the carbon nanotubes are studied in detail. Moreover, the effects of various boundary conditions and geometries are scrutinized on the dynamic characteristics. The results reveal that application of this theory leads to the higher values of the natural frequencies and dynamic pull-in voltages