Loading...
Search for: lotfi-moradlou--mohammad
0.114 seconds

    Design and Development of Turbine Flow Meter with Colibration System

    , M.Sc. Thesis Sharif University of Technology Lotfi Moradlou, Mohammad (Author) ; Farhadi, Alireza (Supervisor)
    Abstract
    In this thesis, design and development of turbine flow meter for measuring of the volumetric flow rate of open channel and calibration system for it have been developed. This system has been constructed from two main sections, namely: software and hardware sections. The hardware section consists of a turbine, turbine chamber, Tachogenerator, microcontroller, and an ultrasonic sensor for measuring of channel water level. The turbine is located in exposure of water stream, and hence can be rotated in proportional to the water stream in which the value of rotation is measured by the tachogenerator, and then sent to the microcontroller, in order to calculate the velocity of water stream. At the... 

    Electrodeposition of Zn-Ni Alloy Nanometer Multilayer

    , M.Sc. Thesis Sharif University of Technology Lotfi, Naser (Author) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    Electrodeposion of Zn-Ni Alloy Nanometer Multilayer has been studied. The investigations show that Multilayer coatings have more corrosion resistance than a Monolayer. The electrodeposition of the multilayer coatings was performed with the single bath technique. The sulfate-borate bath has been used for electrodeposition of the Multilayer coatings. The switching cathode density current has been used for the multilayer coatings in cathode current densities of 20, 30, 40, and 50 mA.cm-2. The number of layers with constant overall thickness of 2 µm was 20, 40, 80, and 100. The composition of layers varied between 5-11% wt Ni with the values of cathode current densities. The Response Surface... 

    Design and Implementation of an Intelligent Agent for Automatic Configuration of Content Delivery Servers

    , M.Sc. Thesis Sharif University of Technology Lotfi, Hossein (Author) ; Fazli, Mohammad Amin (Supervisor)
    Abstract
    Content delivery networks play a significant role in improving the quality of internet services by placing the necessary content closer to users on servers. Currently, over half of internet traffic is delivered through these networks to end users. The efficiency of a content delivery network depends on various parameters, including the type of requested content, workload distribution methods, network topology, routing algorithms, caching policies, network server configurations, and resource allocation (shared or dedicated hardware resources). Additionally, the requests made to a content delivery network vary based on the type of service and even the time of day, making optimization a... 

    Model Development for the Evaluation of Hydrogen Storage Capacity in Hybrid Nanostructures

    , Ph.D. Dissertation Sharif University of Technology Lotfi, Roghaye (Author) ; Saboohi, Yadollah (Supervisor) ; Ghofrani, Mohammad Bagher (Supervisor)
    Abstract
    In the present work storage of hydrogen molecules in hybrid nanostructures has been evaluated. Hybrid nanostructures consist of carbon structure bases which have been doped by metal atoms. Carbon structures used in this thesis include graphene and metal organic frameworks (MOFs). Carbon structures have superior properties such as very low density, while metal atoms are considered to enhance the interactions and increase the hydrogen storage capacity. In the first step of the work, Monte Carlo method was applied to model the system. To develop the Monte Carlo method for hydrogen adsorption on graphene sheets, Feynman-Hibbs corrections were added to Lennard-Jones potential. However in the next... 

    Design of Globally Convergent Observers for Robotic Systems

    , M.Sc. Thesis Sharif University of Technology Lotfi Yagin, Nima (Author) ; Namvar, Mehrzad (Supervisor) ; Mobed, Mohammad (Supervisor)
    Abstract
    In a typical rigid robot manipulator, joint angels and velocities are often considered as system states. Joint angels are usually measured by precise Shaft Encoders. However, lack of velocity measurement sensors “Tachometers” and their undesired characteristics in most of existing robotic systems make it difficult to have access to full system states. As full access to the system states in various applications is inevitable, velocity observers can be used to reconstruct or estimate the unmeasured velocity signals. This thesis presents an observer for global estimation of joint velocities in robot manipulators. A non-minimal model of a robotic manipulator is introduced to design an... 

    Value Creation in Content-oriented E-business

    , M.Sc. Thesis Sharif University of Technology Lotfi, Ali (Author) ; Miremadi, Iman (Supervisor) ; Ghafoori, Mohammad Hossein (Co-Supervisor)
    Abstract
    Considering the high growth potential of creative industry as well as the increasing trend of e-business, content-oriented digital business has been the main focus of this research. These enterprises are a subset of the creative industry that are primarily developed in the digital context. After reviewing the literature, it was observed that the keyword "value creation" in this type of business has been less considered by research.On the other hand, in conversations with managers who are active in the industry, a practical vacuum was revealed on how to create value in these firms; Because a comprehensive review of value creation processes in these firms can ultimately lead to more profitable... 

    Design, Processing and Characterization of Radially Graded Porous Structure for Dental Implant

    , M.Sc. Thesis Sharif University of Technology Lotfi, Mohammad (Author) ; Farahmand, Farzam (Supervisor) ; Movahedi, Mohammad Reza (Supervisor)
    Abstract
    Functionally graded porous structures are very close to the bone tissue. Parameters that are related to the pore size and other parameters that determine mechanical properties, can closely represent properties of bone tissue. These parameters contain the percentage of the porosity and the pore size on the porosity side, and modulus of elasticity and yield stress from mechanical view. Calibrated structures with complex geometries, containing porous material, also can be produced by 3D printing technology. One application of porous structures is in production of dental implant with a cylindrical shape, containing a dense core, surrounded by a porous region. The aim of the present study is to... 

    Effect of RGO/Zn:XCd1- xS crystalline phase on solar photoactivation processes

    , Article RSC Advances ; Volume 6, Issue 52 , 2016 , Pages 46282-46290 ; 20462069 (ISSN) Moradlou, O ; Tedadi, N ; Banazadeh, A ; Naseri, N ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    A series of reduced graphene oxide/ZnxCd1-xS (RGO/ZnxCd1-xS) nanocomposites (0 < x < 1) with different ratios of Zn/Cd were synthesized via a facile hydrothermal route under optimized experimental conditions and were carefully characterized by various techniques. Because very little is known about the morphology, specific surface area, and crystal phase effects of RGO/ZnxCd1-xS crystals on their photoresponsivity, field-emission scanning electron microscopy (FE-SEM), BET surface area analysis and X-ray diffraction (XRD) data were studied to investigate their effects on photoactivity. Based on the results, a crystal phase transition from a cubic phase in RGO/Zn0.9Cd0.1S to a hexagonal... 

    Synthesis and Characterization of Supercapacitor Electrodes Based on Graphene and MnO2 Nanostructure

    , M.Sc. Thesis Sharif University of Technology Mardi, Saeed (Author) ; Moshfegh, Alireza (Supervisor) ; Moradlou, Omran (Co-Advisor)
    Abstract
    Supercapacitors represent a new class of energy storage devices that have been attracted many researchers in last few years. Graphene with unique properties such as superior electrical conductivity and large specific surface area is one of the most suitable materials in supercapacitor applications. Besides, metal oxides are being used as active compounds in supercapacitors due to their role in redox reactions. In this research, synthesis and characterization of supercapacitor electrodes based on graphene and MnO2 nanostructured materials was studied under different conditions. For this purpose, Graphene oxide (GO) was synthesized by Hummers’ method and then, it was deposited on a nickel foam... 

    Design, Fabrication, and Application of Nickel Oxide-Base Nanostructured Electrocatalysts for the Production of Oxygen And Hydrogen from Seawater

    , Ph.D. Dissertation Sharif University of Technology Hemmati, Khadijeh (Author) ; Moshfegh, Alireza (Supervisor) ; Moradlou, Omran (Supervisor)
    Abstract
    Hydrogen is emerging as a clean and ideal fuel. However, its dependency on freshwater resources will be a threat to a sustainable environment. Considering the abundance of seawater and the scarcity of freshwater resources, direct electrolysis of seawater to produce hydrogen fuel can be a promising and potential alternative to pure water electrolysis technologies. Seawater contains electrochemically active ions with the nature of competition with the oxidation reaction of water, thus affecting the catalytic activity and, subsequently, the selectivity. From the thermodynamic and kinetic aspect in the electrolysis of seawater, the unfavorable reaction related to the formation of chlorine... 

    The first study on enhanced photoresponsivity of ZnO-TiO2 nanocomposite thin films by anodic polarization

    , Article Physical Chemistry Chemical Physics ; Volume 13, Issue 10 , Feb , 2011 , Pages 4239-4242 ; 14639076 (ISSN) Naseri, N ; Yousefi, M ; Moradlou, O ; Moshfegh, A. Z ; Sharif University of Technology
    2011
    Abstract
    The physical and photoelectrochemical properties of the anodized ZnO-TiO2 thin films were investigated in this study. Impedance spectroscopy revealed a decrease in charge transfer resistance and Tafel plots determined enhancement of about 200 times in the exchange current (i 0) after anodization at high positive potential. It was found from XPS analysis that after applying the potential of 5 V to the ZnO-TiO2 photoelectrode, the lattice oxygen (O2-) in the thin film is oxidized to molecular oxygen and then, cations such as Zn2+ can be solved in the basic electrolyte and passed to the solution. Moreover, according to AFM analysis it was observed that the surface of the samples has been... 

    Synthesis, Characterization and Photoelectrochemical Application of two Dimensional MoS2 and WS2 Nanosheets

    , Ph.D. Dissertation Sharif University of Technology Zirak, Mohammad (Author) ; Zaker Moshfegh, AliReza (Supervisor) ; Moradlou, Omran (Co-Advisor)
    Abstract
    In this research, Synthesis, characterization and photoelectrochemical application of two dimensional MoS2 and WS2 nanosheets have been carefully investigated. And finally, based on theoritical and experimental analysis results, the mechanisms of the observed photoelectrochemical (PEC) activities were suggested.The ab initio density functional calculations about Mo1-xWxS2 monolayer deposited over a TiO2 (110) substrate revealed a shift in band position of the Mo1-xWxS2 in favor of photoelectrochemical water splitting. Moreover, increase of W concentration in Mo1-xWxS2 could improve the charge separation and increase the effective mass ratio leading to an extension of the electron–hole... 

    Optimal Ag2S nanoparticle incorporated TiO2 nanotube array for visible water splitting

    , Article RSC Advances ; Volume 4, Issue 15 , 2014 , Pages 7838-7844 ; ISSN: 20462069 Gholami, M ; Qorbani, M ; Moradlou, O ; Naseri, N ; Moshfegh, A. Z ; Sharif University of Technology
    2014
    Abstract
    Free-standing TiO2 nanotube array (TNA) films were fabricated via two-step anodization of a titanium sheet. The X-ray diffraction pattern indicated amorphous TNAs were transformed into anatase after annealing the films at 500 °C in air. The surface of TNA was modified by a sequential-chemical bath deposition (S-CBD) method to fabricate Ag2S nanoparticles and forming TNA/Ag2S-n nanostructure, by varying the number of cycles (n). Based on SEM observations, the produced films consisted of vertically ordered tubular structure arrays, each with 125 nm in diameter and 4.1 μm in length containing silver sulphide nanoparticles of ∼12 nm diameter. X-Ray photoelectron spectroscopy (XPS) confirmed the... 

    How CdS nanoparticles can influence TiO2 nanotube arrays in solar energy applications?

    , Article Applied Catalysis B: Environmental ; Volume 162 , January , 2015 , Pages 210-216 ; 09263373 (ISSN) Qorbani, M ; Naseri, N ; Moradlou, O ; Azimirad, R ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this study, titanium dioxide (TiO2) nanotube array (TNA) films are fabricated via anodization of titanium (Ti) sheet. After annealing, the films consisted of well ordered, vertically oriented TNAs of 125±6nm diameter, 38±3nm wall thickness, and 2.9±0.3μm in length. Cadmium sulfide (CdS) nanoparticles are deposited on the synthesized TNAs by sequential-chemical bath deposition (S-CBD) method with different immersion cycle (n) to produce heterogeneous TNA/CdS-n (n=10, 20 and 30) nanostructures. UV-visible absorption spectra of the samples revealed that the absorption edge of CdS modified TNAs was shifted to a higher wavelength with respect to the pure TNAs indicating band gap reduction of... 

    Preparation of Nanofluid by Using Hybrid Nanostructures and Investigation of Thermal and Rheological Properties and Using it in the Petroleum Fluids

    , M.Sc. Thesis Sharif University of Technology Baghbanzadeh, Mohammad Ali (Author) ; Rashtchian , Davood (Supervisor) ; Rashidi, Alimorad (Supervisor) ; Lotfi, Roghayeh (Co-Advisor)
    Abstract
    In this study, thermal and rheological properties of nanofluids of water/carbon nanotubes, water/spherical silica nanoparticles and water/hybrid nanoparticles (hybrid of carbon nanotubes and spherical silica nanoparticles) have been investigated. To do so, carbon nanotubes have been synthesized by CCVD process and spherical silica nanoparticles and hybrid nanoparticles by wet chemical method. After synthesis of nanomaterials, nanofluids have been prepared by using SDBS as a dispersant with the concentration of 1.5 times of concentration of nanomaterials and then thermal conductivity, kinematic viscosity, dynamic viscosity and density of nanofluids have been investigated. As the results show,... 

    Vertically aligned ZnO@CdS nanorod heterostructures for visible light photoinactivation of bacteria

    , Article Journal of Alloys and Compounds ; Vol. 590 , 2014 , pp. 507-513 ; ISSN: 09258388 Zirak, M ; Akhavan, O ; Moradlou, O ; Nien, Y. T ; Moshfegh, A. Z ; Sharif University of Technology
    2014
    Abstract
    Vertically aligned ZnO@CdS nanorod heterostructure films with various loadings of CdS nanoparticle shell were synthesized and applied in photoinactivation of Escherichia coli bacteria under visible light irradiation. While neither the bare ZnO nanorods (with band-gap energy (Eg) of ∼3.28 eV) under visible light irradiation nor the nanorod heterostructures in dark exhibited any significant antibacterial activity, the ZnO@CdS nanorod heterostructures (with Eg ∼2.5-2.6 eV) could successfully inactivate the bacteria under visible light irradiation. Furthermore, it was found that an optimum loading of the CdS shell (corresponding to the effective thickness less than ∼15 nm) is required to achieve... 

    Effect of metal doping, boron substitution and functional groups on hydrogen adsorption of MOF-5: A DFT-D study

    , Article Computational and Theoretical Chemistry ; Vol. 1044, issue , 2014 , Pages 36-43 ; ISSN: 2210271X Lotfi, R ; Saboohi, Y ; Sharif University of Technology
    2014
    Abstract
    In the present work, adsorption of hydrogen molecules over a metal organic framework (MOF-5) has been investigated by using first principles density functional theory (DFT). Different strategies have been applied for improving hydrogen storage, i.e. metal doping, boron substitution and functionalization. The metal atoms used for enhancing hydrogen adsorption include Li, Ca and Sc. It is found that the binding energy between these metal atoms and MOF is not enough to prevent clustering. Therefore a number of carbon atoms are substituted by boron atoms and it is indicated that boron substitution enhances the binding energies, significantly. Also the results reveal that boron substituted MOF... 

    Interaction of hydrogen molecules with perfect, defective and scandium doped polycyclic aromatic hydrocarbon structures

    , Article Computational and Theoretical Chemistry ; Volume 1026 , 2013 , Pages 65-71 ; ISSN: 2210271X Lotfi, R ; Saboohi, Y ; Sharif University of Technology
    2013
    Abstract
    In the present work the interaction of hydrogen molecules with perfect, defective and scandium doped polycyclic aromatic hydrocarbon (PAH) has been evaluated. At first the potential barrier for the penetration of hydrogen molecules through PAH structures has been investigated and then the adsorption of hydrogen molecules over PAH structures has been studied. To model the graphene surface for barrier calculations, it is shown that coronene can successfully estimate the graphene monolayer. The barrier height is calculated for perfect and two different defective PAH structures including Stone-Wales (SW) and 585. It is found that PAH even with small defects is impermeable to hydrogen molecules.... 

    A comparative study on hydrogen interaction with defective graphene structures doped by transition metals

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Vol. 60 , June , 2014 , pp. 104-111 ; ISSN: 13869477 Lotfi, R ; Saboohi, Y ; Sharif University of Technology
    2014
    Abstract
    In the present work, the interaction of hydrogen molecules with defective graphene structures doped by transition metal (TM) atoms is investigated by using first principles density functional theory (DFT). Defective graphene structures include Stone-Wales (SW), 585 and 555-777 and transition metals include early TMs, i.e. scandium (Sc), titanium (Ti) and vanadium (V). It is found that in comparison with the pristine graphene, presence of defects significantly enhances the metal binding. Among three defects, 585 divacancy leads to the strongest binding between graphene and metal. Hydrogen adsorption is then evaluated by sequential addition of hydrogen molecules to the system. The results... 

    Interaction of hydrogen molecules with defective graphene sheets: An ab initio study

    , Article AIChE 2012 - 2012 AIChE Annual Meeting, Conference Proceedings ; 2012 ; 9780816910731 (ISBN) Lotfi, R ; Saboohi, Y ; Sharif University of Technology
    2012
    Abstract
    Hydrogen appears as one of the most promising energy carriers. Hydrogen has the advantage of being the cleanest fuel and as a result it can efficiently help limiting the greenhouse effect. However one of the major barriers for the large scale use of hydrogen, especially in the transportation sector, is hydrogen storage issue. There are four different technologies for storing hydrogen which are as follows: (1) Cryogenic liquid hydrogen (LH); (2) compressed gas storage; (3) metal hydride storage technology; (4) Physisorption methods. Physisorption of hydrogen in novel carbon nanostructures such as carbon nanotubes and graphene seems to be a safe and promising method for storage of hydrogen....