Loading...
Search for: maghsoudi--vida
0.107 seconds

    , M.Sc. Thesis Sharif University of Technology Aftabi, Abed (Author) ; Yaghmaei, Soheyla (Supervisor) ; Maghsoudi, Vida (Supervisor)
    Abstract
    This practice investigates about the resistance & sustainability of a sample of available microorganisms in fruit juices vs. a natural anti microbe called vanillin. To be more precisely the anti bacterial characteristic of vanillin has been tested against famous pathogenic organism Escherichia Coli in apple juice. The practice has been experienced for different concentrations of Vanillin, controlling & reducing the microbe concentration in apple synthetic juice. The effect has been investigated by measuring sensitivity of results in two different temperatures one in 8 degree of centigrade & other in 15, in each temperature two PH have been tested (PH = 3.5 & 4.5) 0-40-80 m-molar as 3... 

    Preparation of Gelatin-Alginate Hydrogel for Using as Cell Culture Scaffold

    , M.Sc. Thesis Sharif University of Technology Fadaodini, Samira (Author) ; Mashayekhan, Shohreh (Supervisor) ; Maghsoudi, Vida (Supervisor)
    Abstract
    Hydrogels are polymeric three-dimensional networks able to swell in the presence of an aqueous medium. Hydrogels from natural proteins and polysaccharides are ideal scaffolds for tissue engineering since they resemble the extracellular matrices of tissue comprised of various amino acids and sugar-based macromolecules.The biocompatible and biodegradable hydrogel scaffolds are promising materials for tissue engineering. Here, we report a new class of hydrogels derived from oxidized alginate (OA) and gelatin. The prepared oxidized alginate was shown to be efficient in crosslinking gelatin, leading to hydrogel formation. The effect of degree of oxidation and concentration of OA on the mechanical... 

    Antioxidant Production from Rice Bran and Optimization of the Process

    , M.Sc. Thesis Sharif University of Technology Arab, Fatemeh (Author) ; Alemzadeh, Iran (Supervisor) ; Maghsoudi, Vida (Supervisor)
    Abstract
    An antioxidant is a molecule capable of preventing the oxidation of other molecules and neutralizing free radicals. Free radicals are the root cause for many human diseases.Rice bran is one of the most important co-products in the rice milling.In this research antioxidant activity of two Iranian rice bran varieties Fajr and Tarem, extracted by three different solvents (methanol, ethanol and ethyl acetate),determined at different time of extraction by measurement of total phenolic content, free radical scavenging, inhabitation of linoleic acid peroxidation and reducing power. The methanolic extract of Fajr rice bran produced strong results in antioxidant activity. The amount of Total... 

    , M.Sc. Thesis Sharif University of Technology Dehghan, Mohammad Reza (Author) ; Aalemzadeh, Iran (Supervisor) ; Maghsoudi, Vida (Co-Advisor)
    Abstract
    Xanthan gum is a water-soluble exo-polysaccharide. It is produced industrially from carbon sources by fermentation using the gram-negative bacterium Xanthomonas campestris. There have been various attempts to produce xanthan gum by fermentation method using bacteria and yeast by using various cheap raw materials. In this study the cultural conditions for xanthan gum production by Xanthomonas campestris were investigated and optimized by response surface methodology, to maximize cell and xanthan production in batch experiments using YM broth without pH control. The individual and interactive effects of three independent variables (carbon source concentration (40-80 g/l), nitrogen source... 

    Optimization of Xanthan Gum Separation

    , M.Sc. Thesis Sharif University of Technology Ranjbar Golafshani, Maedeh (Author) ; Alemzadeh, Iran (Supervisor) ; Maghsoudi, Vida (Co-Advisor)
    Abstract
    Xanthan is a water-soluble anionic polysaccharide that is produced by anaerobic fermentation using the bacterium Xanthomonas campstris. Xanthan is used in various industries, including food industry and oil industry because of its appropriate rheological properties. For this reason, various studies have been done on the production and recovery of xanthan. In this study conditions for recovery of xanthan gum were investigated and optimized by response surface methodology. Initially xanthan production under optimal conditions that determined in previous studies i.e. YM broth at 30 ⁰C without pH control was performed. After production, the gum separation was investigated using food solvents... 

    Presentation of a Model for Prediction of Ch4/Co2/H2s Permeation Through Polymeric Membranes

    , M.Sc. Thesis Sharif University of Technology Azizi, Morteza (Author) ; Mousavi, Abbas (Supervisor) ; Maghsoudi, Vida (Co-Advisor) ; Shamkhali, Amir Naser (Co-Advisor)
    Abstract
    Acidic gases separation from hydrocarbon mixtures is very important in natural gas industry. In this study, the separation of CO2 and H2S from CH4 investigates by experimental and molecular dynamics simulation approaches. For achievement to this goal, it is used two polymeric families, as be divided to polyurethanes and PEBAX copolymers. It is used 4 polyurethane membranes as are named PU-1, PU-2, PU-Ether, and PU-Ester from polyurethanes group. Also, it is applied 5 PEBAX commercial membranes have be known PEBAX-2533, PEBAX-4033, PEBAX-5533, PEBAX-4011, and PEBAX-1074. It is compared between simulation and experimental works and found that there is good agreement between... 

    Dynamics and Control of Needle Movement in Percutaneous Interaction with Prostate Tissue

    , Ph.D. Dissertation Sharif University of Technology Maghsoudi, Arash (Author) ; Jahed, Mehran (Supervisor)
    Abstract
    In many modern medical procedures, needle insertion is an inevitable part of the diagnosis or treatment protocols. The accuracy of the needle insertion is adversely affected by a number of factors. A needle, frequently assumed to be flexible, is inserted into a soft tissue and induces complex mechanical interactions that may result in considerable uncertainties. Tissue intrinsic characteristics as well as its deformation and rotation may cause dramatic complexities. This work considers the needle movement inside the tissue from the dynamics and control point of view. The proposed approach can be regarded as an initial step towards automation of needle insertion procedures; it can also be... 

    Synthesis and Characterization of Nano-zeolite Membranes for Natural Gas Sweetening

    , Ph.D. Dissertation Sharif University of Technology Maghsoudi, Hafez (Author) ; Soltanieh, Mohammad (Supervisor)
    Abstract
    Zeolite membranes are of interest due to their special properties; thermal and mechanical resistances and non-plasticization property in gas separations. Therefore, separation of H2S from natural gas by these membranes is the main goal of this thesis which is not investigated in the world. After some theoretical investigations including diffusion mechanisms of gases in the zeolites and adsorption mechanism of H2S on the zeolites, pure silica CHA-type (Si-CHA) zeolite was selected. After successful synthesis of Si-CHA zeolite, adsorption isotherms of H2S, CO2, and CH4 on the Si-CHA zeolite were measured over pressure range of 0-190 kPa and temperatures of 25 °C, 50 °C, and 75 °C. Acid gases... 

    Simultaneous separation of H2S and CO2 from CH4 by a high silica CHA-type zeolite membrane

    , Article Journal of Membrane Science ; Vol. 470, issue , 2014 , pp. 159-165 ; ISSN: 03767388 Maghsoudi, H ; Soltanieh, M ; Sharif University of Technology
    2014
    Abstract
    A high silica CHA-type membrane was synthesized by the in-situ crystallization method on a disk like α-alumina porous support to separate both acid (H2S, CO2) gases from methane. The membrane showed a permeance of 3.39×10-8mol/m2sPa for pure CO2with CO2/CH4 ideal selectivity of 21.6 at 303K and 100kPa pressure difference across the membrane. The membrane was also tested with N2 and O2 pure gases indicating a small O2/N2 selectivity of 1.2-1.4, which shows that this type of membrane is not suitable for O2/N2 separation. The membrane performance was also analyzed by binary (CO2-CH4) and ternary (H2S-CO2-CH4) gas mixtures, with compositions near the real sour natural gas (CO2: 2.13mol%, H2S:... 

    Optical flow-based motion estimation of ultrasonic images for force estimation in percutaneous procedures: Theory and experimental validation

    , Article IECON Proceedings (Industrial Electronics Conference), 25 October 2012 through 28 October 2012 ; October , 2012 , Pages 1557-1560 ; 9781467324212 (ISBN) Maghsoudi, A ; Jahed, M ; Sharif University of Technology
    2012
    Abstract
    In recent years, there hass been a pronounced emphasis on percutaneous needle steering with the aid of advanced soft tissue modeling techniques. In this work an optical flow based motion estimation method is used to estimate the force applied to the needle by the soft tissue during percutaneous applications. The study considers Finite Element Model (FEM) of the tissue evaluated by the deformation data acquired through the optical flow method. To represent the soft tissue behavior, dynamic FEM with Rayleigh damping and viscoelastic models are used. The method is validated experimentally through offline evaluation of the ultrasonic images of the chicken breast punctured by a needle. The force... 

    A comparison of PD and model-based control of needle for medical procedures

    , Article IEEE International Symposium on Industrial Electronics ; 2012 , Pages 780-785 ; 9781467301589 (ISBN) Maghsoudi, A ; Jahed, M ; Sharif University of Technology
    IEEE  2012
    Abstract
    In this paper, a model-based dynamics equation for the needle movement through the soft tissue is developed. A model-based control scheme which uses the force estimation calculated through the simulated tissue deformation data and the dynamic finite element as the tissue model is proposed. To compare the performance of the proposed controller, a PD controller is also used for the proposed needle dynamics equation. It is shown that even with uncertainty in model parameters; the mode-based controller outperforms the PD controller. Furthermore, although increasing the controller gain improves the performance of PD, but the model-based controller's performance is still superior  

    Dynamics and control of the flexible needles for percutaneous application: Partial feedback linearization method

    , Article IEEE International Symposium on Industrial Electronics ; 2012 , Pages 831-834 ; 9781467301589 (ISBN) Maghsoudi, A ; Jahed, M ; Sharif University of Technology
    2012
    Abstract
    In this paper the dynamics and control of the underactuated flexible needle will be discussed. To evaluate the dynamics of the needle, the study uses Saint Venant-Kirchhoff and finite element method. The model is validated using the experimental data provided in the literature. It is also shown that using iterative decomposition of the dynamics equation the unactuated degree of freedom of the needle tip can be feedback linearized. The effect of the control signal exerted on the tip is projected via iterative decomposition of the dynamics equation. The efficiency of the approach will be next explored through some examples  

    Model-based needle control in prostate percutaneous procedures

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 227, Issue 1 , 2013 , Pages 58-71 ; 09544119 (ISSN) Maghsoudi, A ; Jahed, M ; Sharif University of Technology
    2013
    Abstract
    In percutaneous applications, needle insertion into soft tissue is considered as a challenging procedure, and hence, it has been the subject of many recent studies. This study considers a model-based dynamics equation to evaluate the needle movement through prostate soft tissue. The proposed model estimates the applied force to the needle using the tissue deformation data and finite element model of the tissue. To address the role of mechanical properties of the soft tissue, an inverse dynamics control method based on sliding mode approach is used to demonstrate system performance in the presence of uncertainties. Furthermore, to deal with inaccurate estimation of mechanical parameters of... 

    Inverse dynamics control of needle in prostate brachytherapy

    , Article 2012 IEEE International Conference on Industrial Technology, ICIT 2012, Proceedings ; 2012 , Pages 510-515 ; 9781467303422 (ISBN) Maghsoudi, A ; Jahed, M ; Sharif University of Technology
    IEEE  2012
    Abstract
    Needle insertion into the soft tissue has been the subject of many studies during the last decade, while needle control has become a crucial training tool, evaluating surgeon's skills in such critical incision. This study considers a model-based dynamics equation for the needle movement through the soft tissue. In the proposed model, the force distribution along the needle shaft is estimated through the use of tissue deformation data and tissue model. A novel algorithm for the needle control simulation is also proposed based on the developed dynamics equation of the needle movement. To point out the role of mechanical properties of the soft tissue, an inverse dynamics control method is used... 

    Needle dynamics modelling and control in prostate brachytherapy

    , Article IET Control Theory and Applications ; Volume 6, Issue 11 , July , 2012 , Pages 1671-1681 ; 17518644 (ISSN) Maghsoudi, A ; Jahed, M ; Sharif University of Technology
    2012
    Abstract
    Although 'Needle steering' is considered a challenge in needle insertion strategies, needle control becomes a crucial training tool for evaluating surgeon's skills in such critical incision. In this study, a model-based dynamics equation for the needle movement through the soft tissue is developed. In the proposed control scheme, the force estimation calculated through the simulated tissue deformation data and the dynamic finite element as the tissue model, is used as the force feedback. To point out the role of mechanical properties of the soft tissue, an inverse dynamics control method is used to demonstrate the system performance in presence of uncertainty in tissue mechanical parameters.... 

    Multi-parameter sensitivity analysis for guided needle insertion through soft tissue

    , Article Proceedings of 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences, IECBES 2010, 30 November 2010 through 2 December 2010, Kuala Lumpur ; 2010 , Pages 97-100 ; 9781424476008 (ISBN) Maghsoudi, A ; Jahed, M ; Sharif University of Technology
    2010
    Abstract
    Soft tissue needle insertion characterization has been a focus of many medical and biomedical recent studies. In this study the constrained prostate soft tissue deformation through a finite element model is evaluated. The study considers a sensitivity analysis of the target reaching error with respect to the mechanical, insertion and anatomical parameters in presence of the kinematics constraint on the tissue. The needle insertion into the soft tissue is simulated using the proposed Finite Element Method (FEM). Based on acquired results, the insertion of needle induces a considerable rotation of the prostate tissue due to its specific kinematics and support structure. Such rotation can... 

    Antimicrobial Effects of Iranian Red Sumac

    , M.Sc. Thesis Sharif University of Technology Taheri, Saeede (Author) ; Maghsoodi, Vida (Supervisor) ; Yaghmaei, Soheila (Supervisor)
    Abstract
    The most important desire of all researchers in food industry is decreasing the contamination of foods and increasing their shelf life. Due to harmfulness of chemical preservatives their use has been limited and therefore natural antimicrobials have been demanded. Recently spices have been noticed as natural antimicrobial agents. Sumac is a kind of spice which has antibacterial and antioxidant activities.The aim of this project is to investigate effects of water and alcoholic extracts of Iranian red sumac comparatively on three gram positive bacteria (Bacillus coagulans , Bacillus subtilis, Staphylococcus aureus) and one gram negative (Escherichia coli) by well and disk diffusion method.... 

    Experimental investigation of life-time performance of unbounded natural rubber bearings as an isolation system in bridges

    , Article Structure and Infrastructure Engineering ; July , 2020 , Pages 1-14 Maghsoudi Barmi, A ; Khaloo, A ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    An experimental research study was carried out to investigate the life-time performance of unbounded Steel Reinforced Elastomeric Bearings (SREB), which are designed and used for service limit state in bridges, subjected to seismic demands. Such behaviour was investigated using 13 full-scale specimens in three phases; (1) effects of long-term service, namely the long term presence of vertical loading at service limit state, on the mechanical properties of the bearings, (2) effects of consecutive shear loading at different amplitude in presence of permanent loading, and (3) post-earthquake behaviour of the bearing against service load conditions. An innovative test setup was utilized in which... 

    Design of Integrated Circuit to Extract Energy from Piezoelectric Devices

    , M.Sc. Thesis Sharif University of Technology Maghsoudi, Pedram (Author) ; Sharifkhani, Mohammad (Supervisor)
    Abstract
    Energy harvesting from wasted environmental energy to power low-power electronic devices has emerged as an enabling technology for wireless applications in the past decade. The purpose of this technology is to provide remote power sources and/or recharge storage devices such as batteries and capacitors. This concept has environmental implications in reducing chemical waste produced by replacing batteries and potential monetary benefits that also reduce maintenance costs.Energy harvesting (EH) from untapped natural energy sources is common nowadays due to the increasing demand for electricity. Sources have the potential to generate micro to milliwatt power, depending on environmental... 

    Investigating the Optimum Conditions for Cell Growth and Behavior on Hydrogel Surfaces

    , M.Sc. Thesis Sharif University of Technology Hajiabbas, Maryam (Author) ; Mashayekhan, Shohre (Supervisor) ; Maghsudi, Vida (Supervisor)
    Abstract
    Generally, the concept of producing ‘spare parts’ of the body for replacement of damaged or lost organs lies at the core of the varied biotechnological practices referred as tissue engineering. Tissue engineering is an interdisciplinary field that incorporates principles of engineering with the life sciences. Tissue engineering is based on three principle; cells, scaffolds for cells expansion, attachment as an environment like ECM and growth factors. These things together can help tissue engineers to provide microenvironments which are suitable for special cells. The most important thing in this kind of works is the ability to simulate environment for cells the same as body. According to the...