Loading...
Search for: maleki--j
0.179 seconds

    Speed limit of quantum metrology

    , Article Scientific Reports ; Volume 13, Issue 1 , 2023 ; 20452322 (ISSN) Maleki, Y ; Ahansaz, B ; Maleki, A ; Sharif University of Technology
    Nature Research  2023
    Abstract
    Quantum metrology employs nonclassical systems to improve the sensitivity of measurements. The ultimate limit of this sensitivity is dictated by the quantum Cramér–Rao bound. On the other hand, the quantum speed limit bounds the speed of dynamics of any quantum process. We show that the speed limit of quantum dynamics sets a fundamental bound on the minimum attainable phase estimation error through the quantum Cramér–Rao bound, relating the precision directly to the underlying dynamics of the system. In particular, various metrologically important states are considered, and their dynamical speeds are analyzed. We find that the bound could, in fact, be related to the nonclassicality of... 

    A novel enzyme based biosensor for catechol detection in water samples using artificial neural network

    , Article Biochemical Engineering Journal ; Volume 128 , 2017 , Pages 1-11 ; 1369703X (ISSN) Maleki, N ; Kashanian, S ; Maleki, E ; Nazari, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Biosensors could be used as digital devices to measure the sample infield. Consequently, computational programming along with experimental achievements are required. In this study, a novel biosensor/artificial neural network (ANN) integrated system was developed. Poly (3,4-ethylenedioxy-thiophene)(PEDOT), graphene oxide nano-sheets (GONs) and laccase (Lac) were used to construct a biosensor. The simple and one-pot process was accomplished by electropolymerizing 3,4-ethylenedioxy-thiophene (EDOT) along with GONs and Lac as dopants on glassy carbon electrode. Scanning electron microscopy (SEM) and electrochemical characterization were conducted to confirm successful enzyme entrapment. The... 

    Numerical modeling of sloshing frequencies in tanks with structure using new presented DQM-BEM technique

    , Article Symmetry ; Volume 12, Issue 4 , 2020 Wei, Z ; Feng, J ; Ghalandari, M ; Maleki, A ; Abdelmalek, Z ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    The sloshing behavior of systems is influenced by different factors related to the liquid level and tank specifications. Different approaches are applicable for the assessment of sloshing behavior in a tank. In this paper, a new numerical model based on the differential quadrature method and boundary element approaches is adopted to investigate the sloshing behavior of a tank with an elastic thin-walled beam. The model is developed based on small slope considerations of the free surface. The main assumption of fluid modeling is homogeneity, isotropy, inviscid, and only limited compressibility of the liquid. Indeed, the formulation is represented based on the reduced-order method and then is... 

    Modeling of severe shot peening effects to obtain nanocrystalline surface on cast iron using artificial neural network

    , Article Materials Today: Proceedings ; Volume 3, Issue 6 , 2016 , Pages 2197-2206 ; 22147853 (ISSN) Maleki, E ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Severe plastic deformation methods such as severe shot peening are used in order to improve mechanical properties of the components by surface microstructure nanocrystallization. Severe shot peening is one of the popular mechanical surface treatments generally aimed at generating nanograined layer and compressive residual stress close to the surface. Moreover, artificial neural network has been used as an efficient approach to predict and optimize the engineering problems. In present study effects of conventional and severe shot peening on cast iron were modelled by means of artificial neural networks and they were compared. The obtained results indicate that severe shot peening has superior... 

    Evaluation of Response Modification Factor for Cable Styaed Bridges

    , M.Sc. Thesis Sharif University of Technology (Author) ; Maleki, Shervin (Supervisor)
    Abstract
    Bridges are among the crucial elements of transportation networks and play an important role in facilitating emergency relief efforts following earthquakes. For this reasons, they should have an appropriate performance in earthquakes; Thus, presentation of true design of bridges was necessary. Elastic design of bridges due to the earthquake is uneconomic; hence, during an earthquake, the codes permitted to structures go to their inelastic behavior domain but inelastic analysis of structures are noncommercial and the capability of detail modeling of the inelastic behavior of the material is still impossible. Therefore, designers use response modification factor to consider the inelastic... 

    Infilled-pipe damper

    , Article Journal of Constructional Steel Research ; Volume 98 , July , 2014 , Pages 45-58 ; ISSN: 0143974X Maleki, S ; Mahjoubi, S ; Sharif University of Technology
    2014
    Abstract
    This paper introduces a new passive control device for protecting structures against earthquakes. The device consists of two welded pipes which have two smaller pipes inside them and the spaces between the pipes are filled with metals such as lead or zinc. The device is loaded in shear and takes advantage of plastification of the outer pipes, the inner pipes and the infilled metals, and the friction between metals as energy absorption mechanisms. Quasi-static cyclic tests are performed on six specimens all showing stable hystereses and high damping. A finite element model is developed and calibrated against test results. The model is used to find the optimum sizes of pipes needed for a... 

    Seat width requirement for skewed bridges under seismic loads

    , Article Scientia Iranica ; Vol. 21, issue. 5 , 2014 , pp. 1471-1479 ; ISSN: 10263098 Maleki, S ; Bagheri, S ; Sharif University of Technology
    2014
    Abstract
    In this paper, the dynamic characteristics of skewed bridges are explored analytically. Closed form solutions for translational and torsional periods of free vibration and mode shapes are given for slab-girder skewed bridges. Moreover, the seismic displacement of the deck of skewed bridges is calculated using the response spectrum method and its skew term is compared with the requirement of AASHTO. The effects of seismic force resisting elements, such as elastomeric bearings and end diaphragms are included. It is shown that the skew term in AASHTO's equation can underestimate the seat width requirement for some bridges. A new skew term for the bridge seat width requirement is suggested  

    Numerical study of Slotted-Web-Reduced-Flange moment connection

    , Article Journal of Constructional Steel Research ; Volume 69, Issue 1 , February , 2012 , Pages 1-7 ; 0143974X (ISSN) Maleki, S ; Tabbakhha, M ; Sharif University of Technology
    2012
    Abstract
    Reduced Beam Section (RBS) and Slotted Beam Web (SBW) are two types of seismic resistant moment connections that were introduced after the 1994 Northridge earthquake. These connections have been tested under cyclic loading and have had acceptable performance. In this paper, a new hybrid connection is introduced that is composed of RBS and SBW and is named Slotted-Web-Reduced- Flange (SWRF). Nonlinear finite element analyses are performed on SWRF under cyclic loading. It is shown that the new connection in some cases performs better than its RBS and SBW predecessors. The effects of panel zone strength, continuity plates and slot length are also investigated  

    Dual-pipe damper

    , Article Journal of Constructional Steel Research ; Volume 85 , 2013 , Pages 81-91 ; 0143974X (ISSN) Maleki, S ; Mahjoubi, S ; Sharif University of Technology
    2013
    Abstract
    In this paper, a new passive earthquake energy dissipative device, called the dual-pipe damper (DPD), is introduced, tested and analytically studied. The device consists of two pipes welded at selected locations and loaded in shear. The inelastic cyclic deformation dissipates energy mainly through flexure of the pipe body. However, at large displacements a tension diagonal forms in the middle of the device which further adds to stiffness and strength. The strength, stiffness and energy dissipation of the DPD is more than two single pipe dampers that were previously studied. Cyclic quasi-static tests were performed on four samples of DPD. Excellent ductility, energy absorption and stable... 

    Artificial neural network modeling of Pt/C cathode degradation in pem fuel cells

    , Article Journal of Electronic Materials ; Volume 45, Issue 8 , 2016 , Pages 3822-3834 ; 03615235 (ISSN) Maleki, E ; Maleki, N ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    Use of computational modeling with a few experiments is considered useful to obtain the best possible result for a final product, without performing expensive and time-consuming experiments. Proton exchange membrane fuel cells (PEMFCs) can produce clean electricity, but still require further study. An oxygen reduction reaction (ORR) takes place at the cathode, and carbon-supported platinum (Pt/C) is commonly used as an electrocatalyst. The harsh conditions during PEMFC operation result in Pt/C degradation. Observation of changes in the Pt/C layer under operating conditions provides a tool to study the lifetime of PEMFCs and overcome durability issues. Recently, artificial neural networks... 

    Pipe damper, Part I: Experimental and analytical study

    , Article Journal of Constructional Steel Research ; Volume 66, Issue 8-9 , 2010 , Pages 1088-1095 ; 0143974X (ISSN) Maleki, S ; Bagheri, S ; Sharif University of Technology
    2010
    Abstract
    In this paper the behavior of steel pipes, filled and unfilled with concrete, is studied under cyclic shear to examine the possibility of their use as a seismic damper. Two specimens of steel pipes filled inside with concrete are tested under monotonic and cyclic shear. Four other specimens ofbare steel pipes are tested under fully reversed cyclic shear loading. The results show that the bare steel pipes are capable of absorbing a great amount of energy under a severe cyclic shear loading with a stable hysteretic behavior. This behavior is also simulated using the finite element method. Then, parametric studies are performed to investigate the effects of variations in geometrical properties... 

    Pipe damper, Part II: Application to bridges

    , Article Journal of Constructional Steel Research ; Volume 66, Issue 8-9 , 2010 , Pages 1096-1106 ; 0143974X (ISSN) Maleki, S ; Bagheri, S ; Sharif University of Technology
    2010
    Abstract
    Theoretical and experimental verification of the pipe damper was investigated in Part I of the two companion papers. In this paper, the application of the pipe damper to structures is examined. In particular, single span slab-girder bridges are considered for analytical investigations. A practical detail for the installation of the pipe damper is introduced. Nonlinear dynamic time history analyses are conducted on bridges equipped with the pipe damper and the results are compared with ordinary bridges. Bridge span, ground motion and the pipe length are varied in the analyses. Results show that the pipe damper is a reliable and economical metallic-yielding device that can easily be installed... 

    A new approach for estimating the seismic soil pressure on retaining walls

    , Article Scientia Iranica ; Volume 17, Issue 4 A , Aug , 2010 , Pages 273-284 ; 10263098 (ISSN) Maleki, S ; Mahjoubi, S ; Sharif University of Technology
    2010
    Abstract
    In this paper, a simple finite element model for seismic analysis of retaining walls is introduced. The model incorporates nonlinearity in the behavior of near wall soil, wall flexibility and elastic free field soil response. This model can be employed in nonlinear modeling of retaining walls and bridge abutments. The advantages of this model are simplicity and flexibility in addition to acceptable precision. Using this finite element model, an analytical study is conducted on several soil-wall systems using nonlinear time-history analysis by applying real earthquake records. Based on the results of these analyses, new seismic soil pressure distributions are proposed for different soil and... 

    Numerical study of external flow over ducts with various cross-sections

    , Article Defect and Diffusion Forum ; Volume 366 , 2016 , Pages 10-16 ; 10120386 (ISSN) Maleki, E ; Sadrhosseini, H ; Sharif University of Technology
    Trans Tech Publications Ltd  2016
    Abstract
    In this article a comprehensive numerical study is performed to compare the effect of fluid flow across a duct with various cross sectional shapes and with different velocities of the flow. Circular, elliptical and rectangular cross sections have been chosen for the ducts and air flows across them with four values of low Reynolds numbers in the range of Re = 1 to Re = 1000. Continuity and momentum equations with proper boundary conditions are solved in two dimensions. Streamlines, pressure distribution and Velocity profiles are obtained and creation of vortices, boundary layers, separation region, wake region, reattachment point and stagnation points are studied in detail and the results are... 

    Modeling of shot-peening effects on the surface properties of a (Tib + Tic)/Ti-6Al-4V composite employing artificial neural networks

    , Article Materiali in Tehnologije ; Volume 50, Issue 6 , 2016 , Pages 851-860 ; 15802949 (ISSN) Maleki, E ; Zabihollah, A ; Sharif University of Technology
    Institute of Metals Technology  2016
    Abstract
    Titanium matrix composites (TMCs) have wide application prospects in the field of aerospace, automobile and other industries because of their good properties, such as high specific strength, good ductility, and excellent fatigue properties. However, in order to improve their fatigue strength and life, crack initiation and growth at the surface layers must be suppressed using surface treatments. Shot peening (SP) is an effective surface mechanical treatment method widely used in industry which can improve the mechanical properties of a surface. However, artificial neural networks (ANNs) have been used as an efficient approach to predict and optimize the science and engineering problems. In... 

    Experimental and analytical study on channel shear connectors in fiber-reinforced concrete

    , Article Journal of Constructional Steel Research ; Volume 65, Issue 8-9 , 2009 , Pages 1787-1793 ; 0143974X (ISSN) Maleki, S ; Mahoutian, M ; Sharif University of Technology
    2009
    Abstract
    This paper investigates, experimentally and analytically, the capacity of channel shear connectors embedded in normal and polypropylene (PP) concrete. Limited testing is used to assess the accuracy of a proposed nonlinear finite element model for typical push-out test specimens. Using this model, an extensive parametric study is performed to arrive at a prediction for shear capacity of channel connectors in PP concrete. An equation, for inclusion in design codes, is suggested for the shear capacity of these connectors when used in PP concrete. © 2009 Elsevier Ltd. All rights reserved  

    Roles of surface coverage increase and re-peening on properties of AISI 1045 carbon steel in conventional and severe shot peening processes

    , Article Surfaces and Interfaces ; Volume 11 , 2018 , Pages 82-90 ; 24680230 (ISSN) Maleki, E ; Unal, O ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Surface coverage as one of the most effective parameters of shot peening process has substantial influence on the functionality of the peened component. The aim of this study is to investigate the effects of surface coverage increase on the properties of treated specimens experimentally before and after re-shot peening. Different shot peening treatments from conventional to severe; were performed on the AISI 1045 steel. Microstructural observations and XRD measurements were applied to characterize the circumstance of microstructure changes. In order to investigate the mechanical properties, microhardness profiles were achieved, surface roughness was evaluated and the residual stresses... 

    Entangled multimode spin coherent states of trapped ions

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 35, Issue 6 , 2018 , Pages 1211-1217 ; 07403224 (ISSN) Maleki, Y ; Maleki, A ; Sharif University of Technology
    OSA - The Optical Society  2018
    Abstract
    Multimode macroscopic states consisting of a superposition of spin coherent states that are generated in a trapped ion system are introduced. The role of various parameters that control the entanglement of the system are exposed, and their effects are quantified. In particular, it is shown that the generated states exhibit different entanglement characteristics for odd and even 2nj, where j is the spin of each mode and n is the number of modes. © 2018 Optical Society of America  

    Transesterification of canola oil over Li/Ca-La mixed oxide catalyst: Kinetics and calcination temperature investigations

    , Article Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology ; Volume 45, Issue 4 , 2017 , Pages 442-448 ; 02532409 (ISSN) Maleki, H ; Kazemeini, M ; Sharif University of Technology
    Science Press  2017
    Abstract
    In this research, a solid 1%Li/Ca-La mixed oxide catalyst was prepared using co-precipitation method followed by wet impregnation. The prepared catalyst was used in the transesterification reaction of canola oil and methanol for biodiesel synthesis. The effects of calcination and reaction temperatures were investigated on the activity of the catalyst. In addition, rate of the reaction was studied through a kinetic model for which parameters were determined. Surface properties and structure of the catalyst were characterized through the powder X-ray diffraction (XRD), thermogravimetry/derivative thermogravimetry (TG/DTG), and Fourier transform infrared spectroscopy analysis. All these... 

    Does knowledge base complexity affect spatial patterns of innovation? An empirical analysis in the upstream petroleum industry

    , Article Technological Forecasting and Social Change ; Volume 143 , 2019 , Pages 273-288 ; 00401625 (ISSN) Maleki, A ; Rosiello, A ; Sharif University of Technology
    Elsevier Inc  2019
    Abstract
    Using network analysis, we investigate if an industry's complex and integrated knowledge base leads to a higher spatial concentration (or dispersal)of innovative activities. This is important because the extant literature provides competing claims about how knowledge base complexity impacts on the spatial distribution of industrial innovation. To help empirically resolve this issue, we draw on longitudinal data (1970–2010)on the upstream petroleum industry and build indexes of entropy and complexity to render knowledge base dynamics, assess the spatial concentration of innovation, and study industry structural transformations. We first find a correlation – once a crucial distinction between...