Loading...
Search for: maleki-jirsaraei--n
0.113 seconds

    Simulation of DNA electrophoresis through microstructures

    , Article Electrophoresis ; Volume 28, Issue 3 , 2007 , Pages 301-308 ; 01730835 (ISSN) Maleki Jirsaraei, N ; Sarbolouki, M. N ; Rouhani, S ; Sharif University of Technology
    2007
    Abstract
    The dependence of the mobility of DNA molecules through an hexagonal array of micropillars on their length and the applied electric field was investigated and it was found that mobility is a nonmonotonic function of their length. Results also revealed that the size dependence of the DNA mobility depends on the applied electric field and there is a crossover around E ≈ 25 V/cm for the mobility of λ-DNA and T4-DNA. These observations are explained in terms of the diffusion process inside the structure affected by the solvent and are modeled using the Langevin and its corresponding Fokker-Planck equations. The phenomenon is generalized under three regimes in a phase diagram relating the... 

    Sliding on wet sand

    , Article Granular Matter ; Volume 22, Issue 3 , May , 2020 Liefferink, R. W ; Aliasgari, M ; Maleki Jirsaraei, N ; Rouhani, S ; Bonn, D ; Sharif University of Technology
    Springer  2020
    Abstract
    We present sliding experiments of a sledge on wetted sand and describe that the frictional response is controlled by the penetration hardness of the granular medium. Adding a small amount of water to sand increases the hardness which results in a decrease of the sliding friction. Pouring even more water to sand results in a decrease of the hardness and a subsequent increase of the friction. This inverse correlation between hardness of a wetted granular material and its frictional response to sliding is found to be due to ploughing of the sledge. When the load of the sledge exceeds the penetration hardness of the water-sand mixture the granular material is irreversibly deformed, which is... 

    Saffman-Taylor instability in yield stress fluids

    , Article Journal of Physics Condensed Matter ; Volume 17, Issue 14 , 2005 , Pages S1209-S1218 ; 09538984 (ISSN) Maleki Jirsaraei, N ; Lindner, A ; Rouhani, S ; Bonn, D ; Sharif University of Technology
    Institute of Physics Publishing  2005
    Abstract
    Pushing a fluid with a less viscous one gives rise to the well known Saffman-Taylor instability. This instability is important in a wide variety of applications involving strongly non-Newtonian fluids that often exhibit a yield stress. Here we investigate the Saffmann-Taylor instability in this type of fluid, in longitudinal flows in Hele-Shaw cells. In particular, we study Darcy's law for yield stress fluids. The dispersion equation for the flow is similar to the equations obtained for ordinary viscous fluids but the viscous terms in the dimensionless numbers conditioning the instability now contain the yield stress. This also has repercussions on the wavelength of the instability as it... 

    Fractal flow of inhomogeneous fluids over smooth inclined surfaces and determination of their fractal dimensions and universality classes

    , Article Journal of Physics Condensed Matter ; Volume 17, Issue 14 , 2005 , Pages S1219-S1227 ; 09538984 (ISSN) Maleki Jirsaraei, N ; Ghane Motlagh, B ; Baradaran, S ; Shekarian, E ; Rouhani, S ; Sharif University of Technology
    2005
    Abstract
    Patterns formed by the flow of an inhomogeneous fluid (suspension) over a smooth inclined surface were studied. It was observed that fractal patterns are formed. There exists a threshold angle for the inclination above which global fractal patterns are formed. This angle depends on the particle size of the suspension. We observed that there are two fractal dimensions for these patterns, depending on the area from which the pattern is extracted. If the pattern is taken from the top which only consists of the beginning steps of the pattern forming, one finds two fractal dimensions, i.e. 1.35-1.45 and 1.6-1.7, in which the first one is dominant. And if the entire pattern is taken, then fractal... 

    Fractal behaviour of flow of inhomogeneous fluids over smooth inclined surfaces

    , Article Journal of Physics Condensed Matter ; Volume 16, Issue 15 , 2004 , Pages 2497-2505 ; 09538984 (ISSN) Maleki-Jirsaraei, N ; Ghane Motlagh, B ; Baradaran, S ; Shekarian, E ; Rouhani, S ; Sharif University of Technology
    2004
    Abstract
    Patterns formed by the flow of an inhomogeneous fluid (suspension) over a smooth inclined surface were studied. It was observed that fractal patterns form. There exists a threshold angle for the inclination above which global fractal patterns are formed. This angle depends on the particle size of the suspension. We observed that there are two fractal dimensions for these patterns, depending on the area from which the pattern is extracted. If the pattern is taken from the top which only consists of the beginning steps of the pattern forming, one finds two fractal dimensions, i.e. 1.35-1.45 and 1.6-1.7, in which the first one is dominant while, if the entire pattern is taken, then a fractal... 

    The effect of grain size and shape on sliding friction of wet granular media

    , Article Zeitschrift fur Physikalische Chemie ; Volume 234, Issue 1 , 2020 , Pages 107-116 Aliasgari, M ; Maleki Jirsaraei, N ; Rouhani, S ; Sharif University of Technology
    De Gruyter  2020
    Abstract
    The wet granular material creates networks in which interstitial liquid provides capillary bridges needed to hold grains together. There is an optimal fraction of the interstitial liquid in which the bridges are formed and the friction coefficient is minimal. We found that the size of the grains affects the friction of wet granular media. Our observations demonstrates that the optimum volume fraction, in which the friction coefficient is minimized, increases with grain size, but for sand immersed in water, this minimum friction coefficient itself increases with size and for glass beads immersed in silicone oil it decreases, indicating that the shape of the grains also has an effect on this... 

    Synthesis and analysis of the properties of ferro-fluids

    , Article ICONN 2010 - Proceedings of the 2010 International Conference on Nanoscience and Nanotechnology, 22 February 2010 through 26 February 2010, Sydney, NSW ; 2010 , Pages 91-93 ; 9781424452620 (ISBN) Maleki Jirsaraei, N ; Ghane Motlagh, B ; Ghane Golmohamadi, F ; Ghane Motlagh, R ; Rouhani, S ; Sharif University of Technology
    2010
    Abstract
    We report the rheological properties of ferro-fluid (FF) containing iron oxide nano-particles. At first, a FF was synthesized by using chemical co-precipitaton[1]. The microstructure study using SEM revealed that the FF contained nano-particles with the mean particle size of 35nm. The XRD study revealed that we have well crystallized structures of magnetite; they appeared to be approximately single crystalline structures. The rheological results proved that the FF has non Newtonian behavior, it is a shear thinning fluid in all magnetic fields, Moreover, the magnetic field increases the viscosity in a definite shear rate due to the nano-particles agglomerations and formation of chain-like... 

    Quasi-periodic and irregular motion of a solid sphere falling through a thixotropic yield-stress fluid

    , Article Applied Physics Express ; Volume 10, Issue 11 , 2017 ; 18820778 (ISSN) Fazilati, M ; Maleki Jirsaraei, N ; Rouhani, S ; Bonn, D ; Sharif University of Technology
    2017
    Abstract
    We report the observation of the oscillatory and irregular motion of solid spheres settling under the influence of gravity in a thixotropic yield-stress fluid, namely, a suspension of Laponite. The size of the ball and the aging time of the Laponite suspension are found to be two important parameters that determine whether oscillations occur. The irregular motion may be related to the existence of an unstable flow region and shear banding as is concluded from comparisons with rheological measurements, namely, the flow curve and creep tests, using the same Laponite suspensions. © 2017 The Japan Society of Applied Physics  

    Improvement of size-based particle separation throughput in slanted spiral microchannel by modifying outlet geometry

    , Article Electrophoresis ; Volume 41, Issue 5-6 , February , 2020 , Pages 353-359 Mihandoust, A ; Maleki Jirsaraei, N ; Rouhani, S ; Safi, S ; Alizadeh, M ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    The inertial microfluidic technique, as a powerful new tool for accurate cell/particle separation based on the hydrodynamic phenomenon, has drawn considerable interest in recent years. Despite numerous microfluidic techniques of particle separation, there are few articles in the literature on separation techniques addressing external outlet geometry to increase the throughput efficiency and purity. In this work, we report on a spiral inertial microfluidic device with high efficiency (>98%). Herein, we demonstrate how changing the outlet geometry can improve the particle separation throughput. We present a complete separation of 4 and 6 μm from 10 μm particles potentially applicable to... 

    Artificial neural network modeling of Pt/C cathode degradation in pem fuel cells

    , Article Journal of Electronic Materials ; Volume 45, Issue 8 , 2016 , Pages 3822-3834 ; 03615235 (ISSN) Maleki, E ; Maleki, N ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    Use of computational modeling with a few experiments is considered useful to obtain the best possible result for a final product, without performing expensive and time-consuming experiments. Proton exchange membrane fuel cells (PEMFCs) can produce clean electricity, but still require further study. An oxygen reduction reaction (ORR) takes place at the cathode, and carbon-supported platinum (Pt/C) is commonly used as an electrocatalyst. The harsh conditions during PEMFC operation result in Pt/C degradation. Observation of changes in the Pt/C layer under operating conditions provides a tool to study the lifetime of PEMFCs and overcome durability issues. Recently, artificial neural networks... 

    Iran's bottom-up efforts and challenges throughout the COVID-19 pandemic

    , Article The COVID-19 Pandemic in the Middle East and North Africa: Public Policy Responses ; 2022 , Pages 96-118 ; 9781000653670 (ISBN); 9781032209913 (ISBN) Maleki, A ; Yazdi, N ; Sharif University of Technology
    Taylor and Francis  2022

    Unsupervised anomaly detection with LSTM autoencoders using statistical data-filtering

    , Article Applied Soft Computing ; Volume 108 , 2021 ; 15684946 (ISSN) Maleki, S ; Maleki, S ; Jennings, N. R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    To address one of the most challenging industry problems, we develop an enhanced training algorithm for anomaly detection in unlabelled sequential data such as time-series. We propose the outputs of a well-designed system are drawn from an unknown probability distribution, U, in normal conditions. We introduce a probability criterion based on the classical central limit theorem that allows evaluation of the likelihood that a data-point is drawn from U. This enables the labelling of the data on the fly. Non-anomalous data is passed to train a deep Long Short-Term Memory (LSTM) autoencoder that distinguishes anomalies when the reconstruction error exceeds a threshold. To illustrate our... 

    A comprehensive FE study for design of anchored wall systems for deep excavations

    , Article Tunnelling and Underground Space Technology ; Volume 122 , 2022 ; 08867798 (ISSN) Maleki, J ; Pak, A ; Yousefi, M ; Aghakhani, N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Anchored wall system is one of the common methods used for deep excavation stabilization adjacent to sensitive structures in urban areas. A key aspect of the stability analysis of deep excavations is the amount of deformations occurring on the facing wall and the adjacent structures. In this research, a large number of parametric studies considering all aspects of soil-structure interaction is carried out for different excavation geometries to find the optimal design, and the outcome is shown in the form of design tables and charts. Also, by a GA-PSO algorithm and using the large database obtained from the numerical simulations, a simple equation is developed that can predict the deflections... 

    Iran and COVID-19: A bottom-up, faith-driven, citizen-supported response

    , Article Public Organization Review ; Volume 21, Issue 4 , 2021 , Pages 723-740 ; 15667170 (ISSN) Marvi, A ; Shahraini, S. M ; Yazdi, N ; Maleki, A ; Sharif University of Technology
    Springer  2021
    Abstract
    The COVID-19 pandemic cast doubts on governments' traditional crisis responses and sparked a surge in citizen-led, participatory, bottom-up responses. Iran's experience is worth investigating because it relied significantly on citizen groups to manage the crisis despite long-term sanctions and extremely restricted resources. The authors undertook an exploratory case study using the grounded theory (GT) method and an online survey to explore Iran's confrontation. The central notion discovered was referred to as 'faith-driven civic engagement.’ The response was characterized by adaptability, promptness, and comprehensiveness. The causes and strategic orientations included intrinsic motives,... 

    An electroconductive, thermosensitive, and injectable chitosan/pluronic/gold-decorated cellulose nanofiber hydrogel as an efficient carrier for regeneration of cardiac tissue

    , Article Materials ; Volume 15, Issue 15 , 2022 ; 19961944 (ISSN) Tohidi, H ; Maleki Jirsaraei, N ; Simchi, A ; Mohandes, F ; Emami, Z ; Fassina, L ; Naro, F ; Conti, B ; Barbagallo, F ; Sharif University of Technology
    MDPI  2022
    Abstract
    Myocardial infarction is a major cause of death worldwide and remains a social and healthcare burden. Injectable hydrogels with the ability to locally deliver drugs or cells to the damaged area can revolutionize the treatment of heart diseases. Herein, we formulate a thermo-responsive and injectable hydrogel based on conjugated chitosan/poloxamers for cardiac repair. To tailor the mechanical properties and electrical signal transmission, gold nanoparticles (AuNPs) with an average diameter of 50 nm were physically bonded to oxidized bacterial nanocellulose fibers (OBC) and added to the thermosensitive hydrogel at the ratio of 1% w/v. The prepared hydrogels have a porous structure with open... 

    Balancing public bicycle sharing system using inventory critical levels in queuing network

    , Article Computers and Industrial Engineering ; Volume 141 , March , 2020 Maleki Vishkaei, B ; Mahdavi, I ; Mahdavi Amiri, N ; Khorram, E ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Public Bicycle Sharing System has recently been developed and installed in many cities as a workable and popular transportation system. There are still some noticeable challenges associated with the operation of the system, like responding to all renting requests and all demands of vacant docks for returning bikes. Balancing the inventory of stations is necessary to minimize the rejected demands of bikes and the empty lockers. Here, critical levels are defined to control requests of different routes in which a demand of a specified destination is accepted if the inventory of the original station is higher than the route's critical level. The capacity of stations and the fleet size are... 

    The knowledge map of energy security

    , Article Energy Reports ; Volume 7 , 2021 , Pages 3570-3589 ; 23524847 (ISSN) Nasr Esfahani, A ; Bagheri Moghaddam, N ; Maleki, A ; Nazemi, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Much efforts have been made in the area of energy security in recent years, but due to its wide scope, it is necessary to review relevant knowledge activities and to analyze the state of knowledge of the field of energy security measurement. The purpose of this article is to present a comprehensive map of knowledge in the field of energy security. For this reason, many documents and articles have been collected during the period 2002–2019 using 7 large and reputable scientific databases as well as 53 different journals, 90% white Q1 quality. There is employed meta-synthesis, scientometrics and network analysis. In the initial survey stage where 1290 articles were found, after analyzing the... 

    Green synthesis of silica nanoparticles from olive residue and investigation of their anticancer potential

    , Article Nanomedicine ; Volume 16, Issue 18 , 2021 , Pages 1581-1593 ; 17435889 (ISSN) Rezaeian, M ; Afjoul, H ; Shamloo, A ; Maleki, A ; Afjoul, N ; Sharif University of Technology
    Future Medicine Ltd  2021
    Abstract
    Graphical abstract

    Evaluation of seismic performance factors for tension-only braced frames

    , Article Steel and Composite Structures ; Volume 35, Issue 4 , 2020 , Pages 599-609 Shariati, M ; Lagzian, M ; Maleki, S ; Shariati, A ; Trung, N. T ; Sharif University of Technology
    Techno Press  2020
    Abstract
    The tension-only braced frames (TOBFs) are widely used as a lateral force resisting system (LFRS) in low-rise steel buildings due to their simplicity and economic advantage. However, the system has poor seismic energy dissipation capacity and pinched hysteresis behavior caused by early buckling of slender bracing members. The main concern in utilizing the TOBF system is the determination of appropriate performance factors for seismic design. A formalized approach to quantify the seismic performance factor (SPF) based on determining an acceptable margin of safety against collapse is introduced by FEMA P695. The methodology is applied in this paper to assess the SPFs of the TOBF systems. For... 

    A novel enzyme based biosensor for catechol detection in water samples using artificial neural network

    , Article Biochemical Engineering Journal ; Volume 128 , 2017 , Pages 1-11 ; 1369703X (ISSN) Maleki, N ; Kashanian, S ; Maleki, E ; Nazari, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Biosensors could be used as digital devices to measure the sample infield. Consequently, computational programming along with experimental achievements are required. In this study, a novel biosensor/artificial neural network (ANN) integrated system was developed. Poly (3,4-ethylenedioxy-thiophene)(PEDOT), graphene oxide nano-sheets (GONs) and laccase (Lac) were used to construct a biosensor. The simple and one-pot process was accomplished by electropolymerizing 3,4-ethylenedioxy-thiophene (EDOT) along with GONs and Lac as dopants on glassy carbon electrode. Scanning electron microscopy (SEM) and electrochemical characterization were conducted to confirm successful enzyme entrapment. The...