Loading...
Search for: mardani--h
0.133 seconds

    Hydrogen enrichment of methane and syngas for MILD combustion

    , Article International Journal of Hydrogen Energy ; Volume 44, Issue 18 , 2019 , Pages 9423-9437 ; 03603199 (ISSN) Mardani, A ; Karimi Motaalegh Mahalegi, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Moderate or Intense Low-oxygen Dilution (MILD) combustion is a technology with important characteristics such as significant low emission and high-efficiency combustion. The hydrogen enrichment of conventional fuels is also of interest due to its favorable characteristics, such as low carbon-containing pollutants, high reaction intensity, high flammability, and thus fuel usage flexibility. In this study, the effects of adding hydrogen to methane and syngas fuels have been investigated under conditions of MILD combustion through numerical simulation of a well-set-up MILD burner. The Reynolds-Averaged Navier-Stokes (RANS) approach is adopted along the Eddy Dissipation Concept (EDC) combustion... 

    Experimental investigation on the effects of swirlers configurations and air inlet partitioning in a partially premixed double high swirl gas turbine model combustor

    , Article Journal of Energy Resources Technology, Transactions of the ASME ; Volume 143, Issue 1 , 2021 ; 01950738 (ISSN) Mardani, A ; Rekabdarkolaei, B. A ; Rastaaghi, H. R ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2021
    Abstract
    In this work, a double-high swirl gas turbine model combustor (GTMC) has been experimentally investigated to identify the effects of air partitioning and swirlers geometry on combustion characteristics in terms of flame stability, exhaust gas temperature, NOx generation, and combustion efficiency. This high swirl model combustor is originally developed in the German Aerospace Center (DLR) and known as GTMC and recently reconstructed at Sharif University's Combustion Laboratory (named as SGTMC). Here, SGTMC run for liquefied petroleum gas (LPG) fuel and air oxidizer at room temperature and atmospheric pressure. Eleven different burner geometries, M1-M11, are considered for the aims of this... 

    An experimental study on kerosene spray combustion under conventional and hot-diluted conditions

    , Article Combustion Science and Technology ; 2021 ; 00102202 (ISSN) Mardani, A ; Azimi, A ; Karimi Motaalegh Mahalegi, H ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    The combustion of kerosene spray under hot-diluted conditions and conventional conditions was experimentally investigated. By examining flame photographs, chemiluminescence images, and in-field temperature measurements, the separate effect of different variables including oxygen concentration, temperature and velocity of the co-flowing air, fuel flow rate and injection pressure, and eventually the type of spray nozzle on multiple parameters such as flame stability, structure, luminosity, temperature field, and qualitative CH radical distribution, as well as HCO and NO2 with lower precision, in the reaction region, have been studied. It was observed that an increment in injection pressure and... 

    Liquid petroleum gas flame in a double-swirl gas turbine model combustor lean blow-out, pollutant, preheating

    , Article Thermal Science ; Volume 25, Issue 1 , 2021 , Pages 377-393 ; 03549836 (ISSN) Mardani, A ; Rastaaghi, H. R ; Ghomshi, A. F ; Sharif University of Technology
    Serbian Society of Heat Transfer Engineers  2021
    Abstract
    In this paper, lean blow-out limits in a double swirl GT model combustor were investigated experimentally for liquid petroleum gas fuel. The lean blow-out curve was extracted for different combustor configurations. While burner could operate reasonably under ultra-lean conditions, two different sets of operating conditions, one with a low flow rate and another one with high flow rate, are identified and studied in terms of lean blow-out and pollutant. Results showed that while the flame structure was similar in both cases, the chamber responses to geometrical changes and also preheating are minimal at the low flow rate. That means confinement and injector type have desirable effects on... 

    An experimental study on kerosene spray combustion under conventional and hot-diluted conditions

    , Article Combustion Science and Technology ; Volume 194, Issue 13 , 2022 , Pages 2712-2751 ; 00102202 (ISSN) Mardani, A ; Azimi, A ; Karimi Motaalegh Mahalegi, H ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    The combustion of kerosene spray under hot-diluted conditions and conventional conditions was experimentally investigated. By examining flame photographs, chemiluminescence images, and in-field temperature measurements, the separate effect of different variables including oxygen concentration, temperature and velocity of the co-flowing air, fuel flow rate and injection pressure, and eventually the type of spray nozzle on multiple parameters such as flame stability, structure, luminosity, temperature field, and qualitative CH radical distribution, as well as HCO and NO2 with lower precision, in the reaction region, have been studied. It was observed that an increment in injection pressure and... 

    CircWalk: a novel approach to predict CircRNA-disease association based on heterogeneous network representation learning

    , Article BMC Bioinformatics ; Volume 23, Issue 1 , 2022 ; 14712105 (ISSN) Kouhsar, M ; Kashaninia, E ; Mardani, B ; Rabiee, H. R ; Sharif University of Technology
    BioMed Central Ltd  2022
    Abstract
    Background: Several types of RNA in the cell are usually involved in biological processes with multiple functions. Coding RNAs code for proteins while non-coding RNAs regulate gene expression. Some single-strand RNAs can create a circular shape via the back splicing process and convert into a new type called circular RNA (circRNA). circRNAs are among the essential non-coding RNAs in the cell that involve multiple disorders. One of the critical functions of circRNAs is to regulate the expression of other genes through sponging micro RNAs (miRNAs) in diseases. This mechanism, known as the competing endogenous RNA (ceRNA) hypothesis, and additional information obtained from biological datasets... 

    Optimization of the Eddy Dissipation Concept (EDC) model for turbulence-chemistry interactions under hot diluted combustion of CH4/H2

    , Article Fuel ; Volume 191 , 2017 , Pages 114-129 ; 00162361 (ISSN) Mardani, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Moderate or Intense Low-oxygen Dilution (MILD) combustion which known as a combustion under highly preheated and diluted condition is a relatively new combustion regime including many differences in comparison with the traditional one. Among many distinguished disparities between combustion modeling of conventional and MILD ones, turbulent-chemistry interaction modeling is an open field of study. Current knowledge on modeling this combustion regime shows that the eddy dissipation concept (EDC) model could be successfully used for modeling of this combustion regime. In this paper, it has been tried to propose some guidelines to modify the semi-empirical constants of the original EDC model for... 

    Application of Lattice Codes over the Relay Channel

    , M.Sc. Thesis Sharif University of Technology Mardani, Shokoufeh (Author) ; Behroozi, Hamid (Supervisor)
    Abstract
    In this thesis after the study of the reported works on butterfly network, we improve the rate region of full duplex butterfly network. We use a simple specification of lattice codes to break code book into two code books. By selection of the coded message of the two transmitters in symetric butterfly channel from these two code books, we can decode the sum of the two messages and recover each messages by simple mod operation. The simulation shows that the rate region is improved  

    NO x formation in H 2-CH 4 blended flame under MILD conditions

    , Article Combustion Science and Technology ; Volume 184, Issue 7-8 , Aug , 2012 , Pages 995-1010 ; 00102202 (ISSN) Mardani, A ; Tabejamaat, S ; Sharif University of Technology
    2012
    Abstract
    In this article, NO production mechanisms for CH 4-H 2 combustion under MILD (moderate or intense low-oxygen dilution) conditions are studied using CDF and also zero-dimensional well stirred reactor (WSR) analysis. A H 2/CH 4 jet into a heated and diluted coflow is modeled in CFD analysis. The RANS equations with modified k equations are solved in an axisymmetric 2D computational domain. The GRI2.11 full mechanism is considered to represent the chemical reactions. The effects of oxidizer oxygen concentration, fuel hydrogen content, and fuel jet Reynolds number are studied on NO formation reactions. Results show that the measurements are predicted with an acceptable accuracy. The NNH and N 2O... 

    Numerical Study of Combustion of H2-O2 Cryogenic Propellant under Supercritical Condition

    , M.Sc. Thesis Sharif University of Technology Barani, Ehsan (Author) ; Mardani, Amir (Supervisor)
    Abstract
    In order to improve performance and optimize design of high pressure combustion devices such as liquid rocket engine, gas turbine engine, and diesel engine there is a need for comprehensive understanding of injection, mixing and combustion in supercritical condition. Under this condition chamber pressure is higher than critical pressure of fuel and oxidizer. The characteristic of supercritical condition, include changing thermophysical properties such as density, CP, and compressibility factor. Therefore under this condition ideal state equation cannot correctly predict the mentioned properties. These characteristics make supercritical combustion different from other combustion regimes.... 

    An accurate guidance algorithm for implementation onboard satellite launch vehicles

    , Article Scientia Iranica ; Volume 17, Issue 2 D , JULY-DECEMBE , 2010 , Pages 175-188 ; 10263098 (ISSN) Mardani, M ; Mobed, M ; Sharif University of Technology
    2010
    Abstract
    An algorithm for guiding a launch vehicle carrying a small satellite to a sun synchronous LEO is presented. Before the launch, a nominal path and the corresponding nominal control law for the entire journey are computed. For each sampling instant during the guided flight, a linear equation approximately relating the differences between the actual and nominal values is considered, and a LeastSquares formula using data from on-line state measurements is applied to compute the actual control. The coefficient matrices of the Least-Squares formula can be determined by off-line computations. The method enjoys simplicity of implementation by onboard computers, as well as robust accuracy against... 

    Numerical study of flame structure in the mild combustion regime

    , Article Thermal Science ; Volume 19, Issue 1 , 2015 , Pages 21-34 ; 03549836 (ISSN) Mardani, A ; Tabejamaat, S ; Sharif University of Technology
    Serbian Society of Heat Transfer Engineers  2015
    Abstract
    In this paper, turbulent non-premixed CH4+H2 jet flame issuing into a hot and diluted co-flow air is studied numerically. This flame is under condition of the moderate or intense low-oxygen dilution combustion regime and related to published experimental data. The modelling is carried out using the EDC model to describe turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI2.11 full mechanism are used to represent the chemical reactions of H2/methane jet flame. The flame structure for various O2 levels and jet Reynolds numbers are investigated. The results show that the flame entrainment increases by a decrease in O2 concentration at air side or jet Reynolds number. Local... 

    Study on Optimization of the EDC Model for Highly Preheated and Diluted Condition

    , M.Sc. Thesis Sharif University of Technology Nazari, Aslan (Author) ; Mardani, Amir (Supervisor)
    Abstract
    Moderate and Intense Low-oxygen Dilution(MILD) is the new member of combustion field. Highly preheated reactants and lowering the oxygen level in MILD combustion has some promising advantages. In this study the MILD burner, Jet-in-Hot-Coflow(JHC), is taken as the main test case. In this Research, Eddy Dissipation Concept combustion model ,introduced by Magnussen et al,is investigated in detail and governing equations are re-extracted. EDC combsution model due to moderate compuational cost in comparison with other combustion model and well prediction ability has drawn attention. Simulations on the Jet-in-Hot-Coflow(JHC) has shown the promising performance of the EDC combustion model. It seems... 

    Numerical investigation of supercritical combustion of H2-O2

    , Article Energy and Fuels ; Volume 32, Issue 3 , 2018 , Pages 3851-3868 ; 08870624 (ISSN) Mardani, A ; Barani, E ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    This study investigates GH2/LOX coaxial jet flame at trans- and supercritical conditions using the Reynolds averaged Navier-Stokes approach. Four two-equation-turbulence models, three real equation of states, two chemical mechanisms, and three different chamber pressures are examined. Predictions show good agreement with measurements qualitatively and quantitatively. Based on the results, the predictions of the Soave-Redlich-Kwong equation of state (EOS) are closer to the experiment, while the Aungier-Redlich-Kwong EOS has more deviation than the others. Moreover, the k-ω shear stress transport model has better performance than the other turbulence models. It is also found that the flow... 

    Numerical and Experimental Investigation of Swirl and Preheat Effects in a Double-Swirl Gas Turbine Model Combustor

    , M.Sc. Thesis Sharif University of Technology Asadi, Benyamin (Author) ; Mardani, Amir (Supervisor)
    Abstract
    High swirl combustors with circulative structures in the flow field, have a highly flame stability with a wide range of operating conditions. In this study, Sharif Gas Turbine Model Combustor (SGTMC) which is a double high swirl burner, was investigated experimentally and numerically. In experimental studies, SGTMC with different settings of swirlers is investigated in terms of flame lean blow-out(LBO), wall temperature, the exhaust gas composition and pollutant and also flame geometry parameters. Setting of burner are changed by variations in air fraction between inner and outer air inlets or swirlers’ vanes degrees and flow rotation directions. The results indicate that the concentrations... 

    Numerical Study on MILD Combustion Enhancement through Injecting Plasma

    , M.Sc. Thesis Sharif University of Technology Khanehzar, Andisheh (Author) ; Mardani, Amir (Supervisor)
    Abstract
    In this thesis numerical investigation on the effect of injecting plasma into the MILD combustion regime which is based on the low oxygen dilution and high preheated temperature, were carried out. The burner which was utilized in this study is a co-flow burner, consists of three coaxial channels. From the center to the outside, there is a fuel jet at the center part, a co-flowing dielectric barrier discharge (DBD), and a preheated air section that is vitiated. The DBD that was used in this study is generated between two coaxial electrodes of which the outer one (conical copper electrode) is covered with a dielectric material made of quartz. The burner is modeled in a 2D-axisymmetric... 

    Numerical assessment of MILD combustion enhancement through plasma actuator

    , Article Energy ; Volume 183 , 2019 , Pages 172-184 ; 03605442 (ISSN) Mardani, A ; Khanehzar, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    One promising solution to achieve moderate or intense low-oxygen dilution (MILD) combustion under lower temperatures may be using non-equilibrium plasma discharge. Plasma assisted combustion can extend the flammability limits by reducing the auto-ignition temperature of the reactants and can be a great approach to achieve steady MILD combustion under extreme conditions through decreasing ignition delay time. In particular, the influence of the outlet flows from a co-flowing cylindrical dielectric barrier discharge (DBD) on the CH4/N2 combustion under MILD combustion has been investigated numerically through some simplifications on plasma discharge. A three streams coaxial burner are modeled... 

    Estimation of marginal cost function using bid price and quantity to power market

    , Article 2008 IEEE Electrical Power and Energy Conference - Energy Innovation, Vancouver, BC, 6 October 2008 through 7 October 2008 ; 2008 ; 9781424428953 (ISBN) Mardani, H ; Souri, D ; Sharif University of Technology
    2008
    Abstract
    A major challenge for designers of competitive electricity markets is to devise market rules that limit the capability of electricity producers to exercise market power. Market power is the ability of a firm owning generation assets to raise the market price by its bidding behavior and to profit from this price increase. In addition, an important plan of market monitoring units in long term and competition policy framework is to persuade the participants to bid prices near to their marginal costs. Therefore, estimation of marginal cost function is important in way that Regulatory use it to increase competition in electricity markets. Bid price of the power plant to the power market contains... 

    Dynamic adjustment of the Eddy Dissipation Concept model for turbulent/combustion interactions in mixed combustion regimes

    , Article Combustion and Flame ; Volume 241 , 2022 ; 00102180 (ISSN) Mardani, A ; Nazari, A ; Sharif University of Technology
    Elsevier Inc  2022
    Abstract
    The Eddy Dissipation Concept (EDC) combustion model, in comparison with some other combustion models, has drawn attention, especially for the Moderate or Intense low oxygen Dilution (MILD) combustion. The original formulation of the EDC combustion model is not developed for the MILD combustion regime, and a revision of the model could be considered. In this study, the effect of the characteristic frequency on the EDC combustion model has been investigated, and some parametric studies on the ratios of length and time scales of the fine structures to the Kolmogorov scales have been performed. Results revealed that finding optimum model constants for all combustion field with a wide range of... 

    A fault tolerant parallelism approach for implementing High-throughput pipelined advanced encryption standard

    , Article Journal of Circuits, Systems and Computers ; Volume 25, Issue 9 , 2016 ; 02181266 (ISSN) Mardani Kamali, H ; Hessabi, S ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2016
    Abstract
    Advanced Encryption Standard (AES) is the most popular symmetric encryption method, which encrypts streams of data by using symmetric keys. The current preferable AES architectures employ effective methods to achieve two important goals: protection against power analysis attacks and high-throughput. Based on a different architectural point of view, we implement a particular parallel architecture for the latter goal, which is capable of implementing a more efficient pipelining in field-programmable gate array (FPGA). In this regard, all intermediate registers which have a role for unrolling the main loop will be removed. Also, instead of unrolling the main loop of AES algorithm, we implement...