Loading...
Search for: mardani--m
0.172 seconds

    An accurate guidance algorithm for implementation onboard satellite launch vehicles

    , Article Scientia Iranica ; Volume 17, Issue 2 D , JULY-DECEMBE , 2010 , Pages 175-188 ; 10263098 (ISSN) Mardani, M ; Mobed, M ; Sharif University of Technology
    2010
    Abstract
    An algorithm for guiding a launch vehicle carrying a small satellite to a sun synchronous LEO is presented. Before the launch, a nominal path and the corresponding nominal control law for the entire journey are computed. For each sampling instant during the guided flight, a linear equation approximately relating the differences between the actual and nominal values is considered, and a LeastSquares formula using data from on-line state measurements is applied to compute the actual control. The coefficient matrices of the Least-Squares formula can be determined by off-line computations. The method enjoys simplicity of implementation by onboard computers, as well as robust accuracy against... 

    Mapping flow-focusing microfluidic droplet formation to determine high-throughput droplet generation configurations

    , Article Results in Engineering ; Volume 18 , 2023 ; 25901230 (ISSN) Mardani, F ; Falahatian, S ; Taghipoor, M ; Sharif University of Technology
    Elsevier B.V  2023
    Abstract
    Droplet microfluidics enables the generation of monodisperse droplets of desired size using immiscible multiphase flows. These droplets serve as individual reactors in bio (chemical) analysis. In addition to monodispersity, high throughput is also necessary for many applications, especially in synthesizing nano- and microscale materials. Therefore, high-frequency droplet formation in the stable regimes (dripping and squeezing) is of great importance. In this work, the flow-focusing geometry is numerically investigated to determine the geometrical dimensions and flow rate ratio by which high-frequency, high mass flow rate, and monodispersed droplet formation are achievable. 3D numerical... 

    Numerical study on boundary layer control using CH4[sbnd]H2[sbnd]air Micro-reacting jet

    , Article International Journal of Hydrogen Energy ; Volume 41, Issue 47 , 2016 , Pages 22433-22452 ; 03603199 (ISSN) Mardani, A ; Yahyavi Koochaksarai, M ; Javadi, K ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    The focus of present numerical study is on assessment of control of laminar separation bubble phenomenon using Micro-scale combustion actuators in an airfoil with low Reynolds number under surface effect and free flows. In this way, the characteristics of laminar separation bubble such as its formation, geometry, and transition from laminar to turbulent around airfoil SD8020 in attack angles of 5 and 8° are investigated. Following that, the new combustion actuators in Micro-scale, cold, and hot air-jet injection are introduced to control boundary layer flow in terms of eliminating the separation bubble. Some mechanisms are identified for improvement of methane-air premixed flame... 

    Numerical investigation of gaseous hydrogen and liquid oxygen combustion under subcritical condition

    , Article Energy and Fuels ; Volume 33, Issue 9 , 2019 , Pages 9249-9271 ; 08870624 (ISSN) Mardani, A ; Ghasempour Farsani, A ; Farshchi, M ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    This study is on combustion modeling of gaseous hydrogen and cryogenic liquid oxygen at the subcritical condition for the well-known Mascotte laboratory combustor. The proposed strategy relies on the hybrid Eulerian-Lagrangian framework in which the continuous phase is evaluated by Reynolds Average Navier-Stokes (RANS) equations and the quick discretization method. The dispersed phase of the combustion field is evaluated by the Discrete Phase Method (DPM). The Eddy Dissipation Concept (EDC) has been performed for combustion-turbulence interaction modeling. Effects of the turbulence model, chemical kinetic mechanism, equation of state, and inlet momentum jet flux are investigated in terms of... 

    Optimization of the Eddy Dissipation Concept (EDC) model for turbulence-chemistry interactions under hot diluted combustion of CH4/H2

    , Article Fuel ; Volume 191 , 2017 , Pages 114-129 ; 00162361 (ISSN) Mardani, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Moderate or Intense Low-oxygen Dilution (MILD) combustion which known as a combustion under highly preheated and diluted condition is a relatively new combustion regime including many differences in comparison with the traditional one. Among many distinguished disparities between combustion modeling of conventional and MILD ones, turbulent-chemistry interaction modeling is an open field of study. Current knowledge on modeling this combustion regime shows that the eddy dissipation concept (EDC) model could be successfully used for modeling of this combustion regime. In this paper, it has been tried to propose some guidelines to modify the semi-empirical constants of the original EDC model for... 

    Epidemiological and biomechanical evaluation of airline baggage handling

    , Article International Journal of Occupational Safety and Ergonomics ; Volume 22, Issue 2 , 2016 , Pages 218-227 ; 10803548 (ISSN) Tafazzol, A ; Aref, S ; Mardani, M ; Haddad, O ; Parnianpour, M ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    Objectives. Musculoskeletal disorders (MSDs) are prevalent among airline baggage handlers due to manual materials handling. In this study, the Nordic musculoskeletal questionnaire (NMQ), the revised National Institute for Occupational Safety and Health (NIOSH) lifting equation, and the University of Michigan 3D Static Strength Prediction Program™ (3DSSPP) were used to analyze MSDs among baggage handlers. Methods. The NMQ was filled out by 209 baggage handlers and 46 arbitrarily selected baggage handlers were evaluated using the NIOSH method and 3DSSPP. Results. The obtained results showed that the most common MSDs occurred in the lower back region. The next risky regions included knees,... 

    Design of a mechanically closed-loop test rig for testing aviation industry’s gearboxes

    , Article Aviation ; Volume 21, Issue 4 , 2017 , Pages 132-142 ; 16487788 (ISSN) Mozafari, S ; Rezazadeh Mohamadi, M ; Dolatkhah Takloo, S ; Mardani, M ; Sharif University of Technology
    2017
    Abstract
    Due to the wide usage of rotary equipment and the necessity of their testing for maintenance and repair, test rigs have become necessary. The mechanical closed-loop test rig developed in Sharif University of Technology branch of ACECR (Academic Centre of Education, Culture and Research) is a test rig with low energy losses that is suitable for testing high power gearboxes such as aerospace or wind turbine gearboxes. It can be loaded up to 489Hp at a maximum speed of 3000 rpm, and the test components can be tested in different testing conditions including a variety of torques and speeds. This paper describes the preliminary, conceptual, and detailed design, steps including frame work design,... 

    Failure mode and effect analysis using an integrated approach of clustering and mcdm under pythagorean fuzzy environment

    , Article Journal of Loss Prevention in the Process Industries ; Volume 72 , 2021 ; 09504230 (ISSN) Mardani Shahri, M ; Eshraghniaye Jahromi, A ; Houshmand, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Failure Mode and Effect Analysis (FMEA) is an effective risk analysis and failure avoidance approach in the design, process, services, and system. With all its benefits, FMEA has three limitations: failure mode risk assessment and prioritization, complex FMEA worksheets, and difficult application of FMEA tables. This paper seeks to overcome the shortcomings of FMEA using an integrated approach based on a developed Pythagorean fuzzy (PF) k-means clustering algorithm and a popular MCDM method called PF-VIKOR. In the first step, Pythagorean fuzzy numbers (PFNs) were used to collect Severity (S), Occurrence (O), and Detection (D) factors for failure modes to incorporate uncertainty and fuzziness... 

    Effects of Preheating and CO2 Dilution on Oxy-MILD Combustion of Natural Gas

    , Article Journal of Energy Resources Technology, Transactions of the ASME ; Volume 141, Issue 12 , 2019 ; 01950738 (ISSN) Moghadasi, M. H ; Riazi, R ; Tabejamaat, S ; Mardani, A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2019
    Abstract
    Oxy-moderate or intense low-oxygen dilution (MILD) combustion, which is a novel combination of oxy-fuel technology and MILD regime, is numerically studied in the present work. The effects of external preheating and CO2 dilution level on the combustion field, emission, and CO formation mechanisms are investigated in a recuperative laboratory-scale furnace with a recirculating cross-flow. Reynolds-averaged Navier-Stokes (RANS) equations with eddy dissipation concept (EDC) model are employed to perform a 3-D simulation of the combustion field and the turbulence-chemistry interactions. In addition, a well-stirred reactor (WSR) analysis is conducted to further examine the chemical kinetics of... 

    Numerical study on the effects of creating rotationary flow inside the injector nozzle and changing fuel injection angle on the performance and emission of caterpillar diesel engine

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 44, Issue 1 , 2022 ; 16785878 (ISSN) Farajollahi, A. H ; Firuzi, R ; Rostami, M ; Mardani, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    One way of improving the performance of diesel engines is to produce modifications in the fuel supply systems. In this article, the effects of creating rotationary flow inside the nozzle and changing fuel injection angle on the performance and emission of caterpillar diesel engine have been examined in two separate stages using AVL FIRE software. First, the injector and its spray have been simulated with various geometries. The numerical results of this step indicate that creating rotationary flow inside the nozzle decreases the penetration length, while increases fuel spray cone angle and improves atomization quality. In the subsequent step, the diesel engine has been simulated with its... 

    NO x formation in H 2-CH 4 blended flame under MILD conditions

    , Article Combustion Science and Technology ; Volume 184, Issue 7-8 , Aug , 2012 , Pages 995-1010 ; 00102202 (ISSN) Mardani, A ; Tabejamaat, S ; Sharif University of Technology
    2012
    Abstract
    In this article, NO production mechanisms for CH 4-H 2 combustion under MILD (moderate or intense low-oxygen dilution) conditions are studied using CDF and also zero-dimensional well stirred reactor (WSR) analysis. A H 2/CH 4 jet into a heated and diluted coflow is modeled in CFD analysis. The RANS equations with modified k equations are solved in an axisymmetric 2D computational domain. The GRI2.11 full mechanism is considered to represent the chemical reactions. The effects of oxidizer oxygen concentration, fuel hydrogen content, and fuel jet Reynolds number are studied on NO formation reactions. Results show that the measurements are predicted with an acceptable accuracy. The NNH and N 2O... 

    Numerical study of flame structure in the mild combustion regime

    , Article Thermal Science ; Volume 19, Issue 1 , 2015 , Pages 21-34 ; 03549836 (ISSN) Mardani, A ; Tabejamaat, S ; Sharif University of Technology
    Serbian Society of Heat Transfer Engineers  2015
    Abstract
    In this paper, turbulent non-premixed CH4+H2 jet flame issuing into a hot and diluted co-flow air is studied numerically. This flame is under condition of the moderate or intense low-oxygen dilution combustion regime and related to published experimental data. The modelling is carried out using the EDC model to describe turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI2.11 full mechanism are used to represent the chemical reactions of H2/methane jet flame. The flame structure for various O2 levels and jet Reynolds numbers are investigated. The results show that the flame entrainment increases by a decrease in O2 concentration at air side or jet Reynolds number. Local... 

    Numerical investigation of supercritical combustion of H2-O2

    , Article Energy and Fuels ; Volume 32, Issue 3 , 2018 , Pages 3851-3868 ; 08870624 (ISSN) Mardani, A ; Barani, E ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    This study investigates GH2/LOX coaxial jet flame at trans- and supercritical conditions using the Reynolds averaged Navier-Stokes approach. Four two-equation-turbulence models, three real equation of states, two chemical mechanisms, and three different chamber pressures are examined. Predictions show good agreement with measurements qualitatively and quantitatively. Based on the results, the predictions of the Soave-Redlich-Kwong equation of state (EOS) are closer to the experiment, while the Aungier-Redlich-Kwong EOS has more deviation than the others. Moreover, the k-ω shear stress transport model has better performance than the other turbulence models. It is also found that the flow... 

    Numerical assessment of MILD combustion enhancement through plasma actuator

    , Article Energy ; Volume 183 , 2019 , Pages 172-184 ; 03605442 (ISSN) Mardani, A ; Khanehzar, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    One promising solution to achieve moderate or intense low-oxygen dilution (MILD) combustion under lower temperatures may be using non-equilibrium plasma discharge. Plasma assisted combustion can extend the flammability limits by reducing the auto-ignition temperature of the reactants and can be a great approach to achieve steady MILD combustion under extreme conditions through decreasing ignition delay time. In particular, the influence of the outlet flows from a co-flowing cylindrical dielectric barrier discharge (DBD) on the CH4/N2 combustion under MILD combustion has been investigated numerically through some simplifications on plasma discharge. A three streams coaxial burner are modeled... 

    Estimation of marginal cost function using bid price and quantity to power market

    , Article 2008 IEEE Electrical Power and Energy Conference - Energy Innovation, Vancouver, BC, 6 October 2008 through 7 October 2008 ; 2008 ; 9781424428953 (ISBN) Mardani, H ; Souri, D ; Sharif University of Technology
    2008
    Abstract
    A major challenge for designers of competitive electricity markets is to devise market rules that limit the capability of electricity producers to exercise market power. Market power is the ability of a firm owning generation assets to raise the market price by its bidding behavior and to profit from this price increase. In addition, an important plan of market monitoring units in long term and competition policy framework is to persuade the participants to bid prices near to their marginal costs. Therefore, estimation of marginal cost function is important in way that Regulatory use it to increase competition in electricity markets. Bid price of the power plant to the power market contains... 

    Dynamic adjustment of the Eddy Dissipation Concept model for turbulent/combustion interactions in mixed combustion regimes

    , Article Combustion and Flame ; Volume 241 , 2022 ; 00102180 (ISSN) Mardani, A ; Nazari, A ; Sharif University of Technology
    Elsevier Inc  2022
    Abstract
    The Eddy Dissipation Concept (EDC) combustion model, in comparison with some other combustion models, has drawn attention, especially for the Moderate or Intense low oxygen Dilution (MILD) combustion. The original formulation of the EDC combustion model is not developed for the MILD combustion regime, and a revision of the model could be considered. In this study, the effect of the characteristic frequency on the EDC combustion model has been investigated, and some parametric studies on the ratios of length and time scales of the fine structures to the Kolmogorov scales have been performed. Results revealed that finding optimum model constants for all combustion field with a wide range of... 

    Numerical Study of Combustion of H2-O2 Cryogenic Propellant under Supercritical Condition

    , M.Sc. Thesis Sharif University of Technology Barani, Ehsan (Author) ; Mardani, Amir (Supervisor)
    Abstract
    In order to improve performance and optimize design of high pressure combustion devices such as liquid rocket engine, gas turbine engine, and diesel engine there is a need for comprehensive understanding of injection, mixing and combustion in supercritical condition. Under this condition chamber pressure is higher than critical pressure of fuel and oxidizer. The characteristic of supercritical condition, include changing thermophysical properties such as density, CP, and compressibility factor. Therefore under this condition ideal state equation cannot correctly predict the mentioned properties. These characteristics make supercritical combustion different from other combustion regimes.... 

    Application of Lattice Codes over the Relay Channel

    , M.Sc. Thesis Sharif University of Technology Mardani, Shokoufeh (Author) ; Behroozi, Hamid (Supervisor)
    Abstract
    In this thesis after the study of the reported works on butterfly network, we improve the rate region of full duplex butterfly network. We use a simple specification of lattice codes to break code book into two code books. By selection of the coded message of the two transmitters in symetric butterfly channel from these two code books, we can decode the sum of the two messages and recover each messages by simple mod operation. The simulation shows that the rate region is improved  

    Study on Optimization of the EDC Model for Highly Preheated and Diluted Condition

    , M.Sc. Thesis Sharif University of Technology Nazari, Aslan (Author) ; Mardani, Amir (Supervisor)
    Abstract
    Moderate and Intense Low-oxygen Dilution(MILD) is the new member of combustion field. Highly preheated reactants and lowering the oxygen level in MILD combustion has some promising advantages. In this study the MILD burner, Jet-in-Hot-Coflow(JHC), is taken as the main test case. In this Research, Eddy Dissipation Concept combustion model ,introduced by Magnussen et al,is investigated in detail and governing equations are re-extracted. EDC combsution model due to moderate compuational cost in comparison with other combustion model and well prediction ability has drawn attention. Simulations on the Jet-in-Hot-Coflow(JHC) has shown the promising performance of the EDC combustion model. It seems... 

    Numerical and Experimental Investigation of Swirl and Preheat Effects in a Double-Swirl Gas Turbine Model Combustor

    , M.Sc. Thesis Sharif University of Technology Asadi, Benyamin (Author) ; Mardani, Amir (Supervisor)
    Abstract
    High swirl combustors with circulative structures in the flow field, have a highly flame stability with a wide range of operating conditions. In this study, Sharif Gas Turbine Model Combustor (SGTMC) which is a double high swirl burner, was investigated experimentally and numerically. In experimental studies, SGTMC with different settings of swirlers is investigated in terms of flame lean blow-out(LBO), wall temperature, the exhaust gas composition and pollutant and also flame geometry parameters. Setting of burner are changed by variations in air fraction between inner and outer air inlets or swirlers’ vanes degrees and flow rotation directions. The results indicate that the concentrations...