Loading...
Search for: marouf-mashat--azadeh
0.098 seconds

    Technical and Economical Feasibility Study of Using Flare Gas for Converting to Other Products in Iran

    , M.Sc. Thesis Sharif University of Technology Marouf Mashat, Azadeh (Author) ; Sattari, Sourena (Supervisor)
    Abstract
    The Increasing trend of gas flaring over oil fields and gas process systems in Iran not only causes several environmental problems, but makes the economical resources useless as well. Considering the high amount of flaring and old facilities, one of the best solutions is the recovery of the flare gas in Iran. It seems that collecting the flare gas is not possible in different sectors. Therefore, using a plant for converting flare gas to other products must be logical. In this project, the feasibility study of converting flare gas to other products is studied. For this reason, a methanol plant is simulated; whose input feed is the content of flare gas of the South of Iran (Marun and Siri).... 

    Physical properties and applications of clay nanofiller/epoxy nanocomposites

    , Article Physical Properties and Applications of Polymer Nanocomposites ; 2010 , Pages 743-772 ; 9781845696726 (ISBN) Marouf, B. T ; Bagheri, R ; Sharif University of Technology
    2010
    Abstract
    The physical properties including glass transition temperature and permeability behavior of clay-filled epoxies are reviewed in this chapter. There is no consensus in the literature on how nanoclay affects the α-relaxation temperature in epoxy systems. This perhaps rises from the complexity of nanoclay morphology in polymeric resins and the interphase properties since morphology of nanoclay and interphase characteristics are two key parameters to control the glass transition process in epoxy nanocomposites. In addition, the possible existence of several α-transitions in montmorillonite-filled epoxies due to the existence of several relaxation domains may account for the controversial... 

    Fracture behavior of multi-layered composites under impact loading

    , Article Materials Science and Engineering A ; Volume 448, Issue 1-2 , 2007 , Pages 20-24 ; 09215093 (ISSN) Tekyeh Marouf, B ; Bagheri, R ; Sharif University of Technology
    2007
    Abstract
    In this investigation, aluminum layers are bonded together using epoxy adhesive. The adhesive is modified using different additives and the influence of adhesive composition on interfacial fracture energy is measured via double cantilever beam (DCB) test. To characterize the mechanical behavior of the adhesive, compression and impact tests were incorporated. The results of compression and impact tests show that compressive and impact properties of adhesives are functions of type and content of modifier. In the DCB test, it was observed that while addition of rubber particles increase interfacial fracture energy of epoxy, incorporating SiC particles decrease this parameter. Also, the results... 

    Role of interfacial fracture energy and laminate architecture on impact performance of aluminum laminates

    , Article Composites Part A: Applied Science and Manufacturing ; Volume 39, Issue 11 , 2008 , Pages 1685-1693 ; 1359835X (ISSN) Marouf, B.T ; Bagheri, R ; Mahmudi, R ; Sharif University of Technology
    2008
    Abstract
    The impact behavior of aluminum/epoxy laminates was studied by changing the number of layers and the interface strength. It should be noted that although the overall thickness did not changed, the individual layers decreased in thickness when the number of layers increased. The results indicate that the impact resistance of the laminate increases with the number of layers, while the interface strength has a less pronounced influence (50%) on the impact resistance of the laminate. It is also deducted that if the ratio of layer thickness to plastic zone size is smaller than or equal to 1, the impact behavior of the laminates is sensitive to the interface strength. © 2008 Elsevier Ltd. All... 

    Effect of Microstructure Factors on Fracture Behavior of Clay-Rubber-Epoxy Hybrid Nanocomposites

    , Ph.D. Dissertation Sharif University of Technology Tekyeh Marouf, Bahereh (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    The aim of this study is to investigate the effects of nanoclay and rubber particles morphologies on fracture behavior of a lightly cross-linked epoxy. In addition, the role of cavitation resistance of rubber particles on fracture behavior of the nanoclay-rubber-epoxy hybrids was studied. Two types of organoclay and three kinds of rubber modifiers (in micron and nano-size) were incorporated into the epoxy. The results obtained indicate that addition of either intercalated or exfoliated clay increases fracture toughness of the epoxy resin, although the increases in toughness are modest (a 50% increase). The microscopy examinations and the micromechanical models revealed that the... 

    Effects of number of layers and adhesive ductility on impact behavior of laminates

    , Article Materials Letters ; Volume 58, Issue 22-23 , 2004 , Pages 2721-2724 ; 0167577X (ISSN) Tekyeh Marouf, B ; Bagheri, R ; Mahmudi, R ; Sharif University of Technology
    2004
    Abstract
    Laminated composites are made using different routes, including adhesive bonding. In this investigation, Aluminum layers are bonded together using epoxy adhesive (neat, rubber-modified and filled-epoxy). In phase one of this investigation, the influence of number of layers and adhesive ductility have been studied on dynamic behavior of composites. The results of impact behavior of laminates indicate that the impact energy increases with the number of layers. Also, it can be concluded that there is much more sensitivity of the impact energy of the composite to the number of the layers than that to the adhesive composition. © 2004 Elsevier B.V. All rights reserved  

    Prediction of Droplet size and Velocity Distribution by using Maximum Entropy Method

    , M.Sc. Thesis Sharif University of Technology Jafari, Sajjad (Author) ; Kebriaee, Azadeh (Supervisor)

    Thermal Analysis of Regenerative Cooling in Liquid Rocket Engines

    , M.Sc. Thesis Sharif University of Technology Azizi, Mahdi (Author) ; Kebriaei, Azadeh (Supervisor)
    Abstract
    In this thesis to simulate the behavior of liquid engine Thrust chamber of hot gas from a quasi one dimensional code used when the effects of the heat transfer and friction in those terma. As well as during the regenerative channel is simulated by considering the equation’s of continuity, momentum and energy for one dimensional, effects of increase temperature, pressure drop, change the density of coolant flow resulting from the warming which is visible along the way to increase the accuracy of calculation of the thermal flux output of the engine, use a suitable model for unclear boiling in consideration of heat transfer coefficient used coolant flow it has been. As well as coupling of heat... 

    Experimental Study of Spray Pattern of Two Impinging Jets of Non-Newtonian Gel Fluid Containing Aluminum Nanoparticles

    , M.Sc. Thesis Sharif University of Technology Jafari, Maryam (Author) ; Kebriaee, Azadeh (Supervisor)
    Abstract
    In most of the studies conducted on the physics of the outflow from impinging jet injectors, Newtonian fluids have been used for their research and experiments. These studies have investigated the effect of factors such as geometrical parameters of the injector and physical properties of the fluid on different regimes resulting from the impact of the jet stream; Unfortunately, very few studies have been conducted on how to form spray and atomization in gel non-Newtonian fluids containing nanoparticles to investigate the above factors when using impinging jet injectors. Furthermore, although the addition of nanoparticles has advantages for better combustion, there are still problems in... 

    Experimental Investigation on Breakup Pattern of two Liquid Impinging Jets

    , M.Sc. Thesis Sharif University of Technology Kashanj, Sina (Author) ; Kebriaee, Azadeh (Supervisor)
    Abstract
    Liquid atomization have broad range of usage in different industries. Colliding two jets is one method for atomization of different kind of fluids especially high viscose and viscoelastic fluids. Here, we experimentally investigated the effect of skewness and velocity differential of two Newtonian viscose colliding jets on formation of a special oscillating liquid sheet pattern with periodic fragmentation called “fishbone”. For this work, four liquid sheet regimes; triple chain, double chain, close rim, and open rim which fishbone pattern could be observed were produced and Skewness and jets velocity differential were applied to them. A synced CCD camera and stroboscope illumination source... 

    Experimental Investigation on Interaction of Three Converging Jets

    , M.Sc. Thesis Sharif University of Technology Kazemi, Sajad (Author) ; Kebriaee, Azadeh (Supervisor)
    Abstract
    In this thesis the instability regimes of the liquid sheet resulted from interactions of three converging jets is investigated. To this end, the shadowgraphy method is used. All the experiments have been done under the atmospheric pressure by using water as the jet fluid. The injectors are orifice ones.In our study, the effects of changing the jet velocities and changing the three jets’ structure (planar and non-planar) in having different liquid sheet shapes are investigated.Although so many researches have been done on interactions of two converging jets until now, there is almost not any researches about interactions of three converging jets. Considering this, this thesis topic is novel,... 

    Particle Shadow Velocimetry in Premixed Flames

    , M.Sc. Thesis Sharif University of Technology Movaffagh, Sajjad (Author) ; Kebriaee, Azadeh (Supervisor)
    Abstract
    The velocity of the hot outflow gas in laminar premixed flame is one of the important properties of combustion, along with other properties such as temperature and flame components. In fact, laminar flame velocity has been employed in a multitude number of concepts ranging from engine design to achieving flame properties under turbulent conditions. In this research, a cylindrical Bunsen burner and appropriate TIO2 particles were used. Particles with diameters between 10-23 microns were used and the exit diameter of burner considered 14 mm. In this study, the equivalence ratio with a value between 0.9-1.2 are fed with LPG fuel to create a laminar premixed flame. As a result of the present... 

    Synthesis of Antibacterial Hydroxyapatite/Titania-Silver Coating on Titanium Substrate Using Sol-Gel Method

    , M.Sc. Thesis Sharif University of Technology Azadeh, Mohsen (Author) ; Afshar, Abdollah (Supervisor)
    Abstract
    With the increase in the average age of the world's population, osteoporosis is a worldwide incidence. This disease, along with natural disasters, are important factors in the occurrence of fractures in various bones of the body. One of the methods for solving this problem and replacing with broken body bones is the use of metal implants with hydroxyapatite-based coatings. One of the common problems with using implants in the body is the infection in the adjacent parts of the implant. To overcome this problem, several studies have been carried out on the use of hydroxyapatite coatings with metal ions or antibacterial oxide compounds. In the present study, the influence of factors such as the... 

    Interferometric Laser Imaging for Droplet Sizing (ILIDS)in Sparse Sprays

    , M.Sc. Thesis Sharif University of Technology Rezaee, Hassan (Author) ; Kebriaee, Azadeh (Supervisor)
    Abstract
    In the present work we first introduced ILIDS and review the theory of interferometry and light scattering from droplets. Bases on ILIDS method, droplets are irradiated by monochrome sheet laser, where the superposition of reflected and first-order refracted beams form a parallel fringe pattern at out of focus plane on the imaging sensor in the forward-scatter region. This pattern can be related to the droplet size by using simple geometrical optics. For the present work, an image processing algorithm is utilized to capture weak and noisy images of droplets to reduce the lost data in the sizing procedure. Since ILIDS method is applied for small and dilute spray, it is suitable for... 

    Experimental Study of Liquid Sheet Breakup in Cross Flow

    , Ph.D. Dissertation Sharif University of Technology Olyaei, Ghader (Author) ; Kebriaee, Azadeh (Supervisor)
    Abstract
    Injecting liquid fuel into the cross flow of air provides high penetration of the liquid, rapid mixing with air, and increased efficiency. This method has widespread applications in the propulsion systems of gas turbines, scramjets, turbine blade cooling, and fuel injection for engine afterburners. One of the design strategies for future aircraft engines is to reduce pollutants using fuel spray into the cross flow instead of direct jet fuel injection and using renewable energy sources. The applications of cross flows include injecting fluid through rotating pressure injectors in exhaust flows, injecting fluid through pressure-rotating injectors in radial injectors, and using slinger... 

    Implementation of Local Chemiluminescence Method on Flame

    , M.Sc. Thesis Sharif University of Technology Reyhani, Anahita (Author) ; Kebriaei, Azadeh (Supervisor)
    Abstract
    In the present work, the local Chemiluminescence method has been implemented on a laminar premixed propane-air flame. The goal of this work is to achieve a system capable of measuring the intensity of Chemiluminescent radiations of CH* and OH* radicals locally and with high spatial and temporal accuracy. For this purpose, a setup has been designed and developed. In order to achieve high spatial accuracy for local measurements, a Cassegrain lens has been designed and built, which has the ability to collect light from a cylindrical control volume with a cross-sectional diameter of 58 μm and a depth of 3.4 mm. An optical system for dividing and filtering light based on wavelength has also been... 

    Implementation of an Optical Imaging Technique for Surface Pressure Visualization in Fluid Flows

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Farhad (Author) ; Kebriaei, Azadeh (Supervisor)
    Abstract
    Quantitative measurement of pressure on surfaces in wind tunnels and flight tests is essential to understand the aerodynamic performance of flying vehicles. Pressure data are also essential for validation and verification of computational fluid dynamics codes. One of the relatively new methods of measuring pressure distribution on aerodynamic surfaces is the method of pressure sensitive paint (PSP). The PSP method is an optical technique that can measure the pressure distribution on the surface without using common pressure sensors or transducers, with greater spatial resolution and lower cost. This method has a unique ability for non-contact (non-interfering) measurements. In this method,... 

    Anomalous fracture behavior in an epoxy-based hybrid composite

    , Article Materials Science and Engineering A ; Volume 515, Issue 1-2 , 2009 , Pages 49-58 ; 09215093 (ISSN) Marouf, B. T ; Pearson, R. A ; Bagheri, R ; Sharif University of Technology
    2009
    Abstract
    In this investigation, core-shell rubber particles and organically modified clay were added to an epoxy resin and the changes in mechanical behavior were studied. As expected, the yield strength of the organoclay-filled epoxies increased modestly with increasing clay content and the yield strength of the rubber-modified compounds decreased with rubber content. Interestingly, the compressive yield strength of epoxy resins containing both rubber particles and organoclay (a.k.a. hybrid nanocomposites) was found to be independent on organoclay content (up to 5 phr). The fracture toughness of organoclay-filled epoxies increased modestly with clay content and, as expected, the increases in... 

    Modeling of stiffening and strengthening in nano-layered silicate/epoxy

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 30, Issue 1 , 2017 , Pages 93-100 ; 17281431 (ISSN) Marouf, B. T ; Pearson, R. A ; Bagheri, R ; Sharif University of Technology
    2017
    Abstract
    The aim of this paper is to investigate adhesion property between nano-layered filler and the polymer matrix using a combination of experimental and micromechanical models as well as the changes in yield strength and stiffness of a layered silicate-filled epoxy nanocomposite. The results indicate that addition of intercalated layered silicate particles increased Young's modulus and yield strength of the epoxy resin, although the increases in stiffness and yield strength are modest, 30% and 4%, respectively. In addition, experimental results were compared with predictive stiffening and strengthening models. The rule of mixtures provides an upper bound for the modulus in these materials, while... 

    Observation of two α-relaxation peaks in a nanoclay-filled epoxy compound

    , Article Journal of Materials Science ; Volume 43, Issue 21 , 2008 , Pages 6992-6997 ; 00222461 (ISSN) Marouf, B. T ; Bagheri, R ; Pearson, R. A ; Sharif University of Technology
    2008
    Abstract
    A study was conducted to report an observation on the effect of nanoclay fillers on the α-relaxation in an epoxy resin. The observation provided useful facts about glass transition processes in nanoclay-filled epoxy composites. The investigation involved the synthesis of intercalated-exfoliated clay-epoxy compounds, by swelling an organophilic montmorillonite in an aromatic epoxy resin and polymerization. The epoxy resin used in the study was a diglycidyl ether of bisphenol A (DGEBA), EPON 828, with an equivalent weight of 184-190 g/eq from Hexion Specialty Chemicals. The epoxy resin was cured with piperidine, obtained from Sigma-Aldrich. Nanomer® 1.30E. An octadecyl amine treated...