Loading...
Search for:
mashayekh--kazem
0.148 seconds
Total 103 records
Numerical Solution of Two-dimensional Compressible Flow Using Immersed Boundary Method with Compact Finite Difference Scheme
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
In this study, the viscous compressible flow is simulated over two-dimensional geometries by using the immersed boundary method and applying a high-order accurate numerical scheme. A fourth-order compact finite-difference scheme is used to accurately discretize the spatial derivative terms of the governing equations and the time integration is performed by the fourth-order Runge–Kutta scheme. To regularize the numerical solution and eliminate spurious modes due to unresolved scales, nonlinearities and inaccuracies in implementing boundary conditions, high-order low-pass compact filters are applied. A uniform Cartesian grid that is not coincident with the body surface is used and the boundary...
Real-Time Hybrid Motion Planning For Autonomous Uavs in Dynamic Environments
, M.Sc. Thesis Sharif University of Technology ; Alasty, Aria (Supervisor)
Abstract
This study is about real-time hybrid motion planning for autonomous UAVs in dynamic environments. The algorithm is based on system dynamic quantization to trim trajectories and maneuvers, constructing a library of primitives which guarantee the controllability of the system. Random algorithms introduced in literature of motion planning have an offline phase, reducing the computational complexity of online phase. By using dynamic quantization, we have achieved a new totally online algorithm, increasing the probability of finding a solution. Dynamic programming is the core of this algorithm, instead of offline calculations in before random algorithms. In order to decrease the exponential...
Use of Numerical Simulation to Study the Reduction of Steam Turbine Back Pressure Via Implementing Heat Pipe in Upstream Air Condenser
, M.Sc. Thesis Sharif University of Technology ; Darbandi, Masoud (Supervisor)
Abstract
Iran's experience shows that either single or combined power generation cycles, face heavy summer performance deficiencies. The most limitation of power generation in steam cycles is due to their poor condenser performance.The less condenser performance, the more turbine back pressure, and the more turbine back pressure, the less cycle power generation. The main objective of the present study is to reduce steam turbine back pressure in the combined cycle of an organic Rankine-vapor compression refrigeration by installing heat pipes in suitable locations inside the Air cooled condense (ACC). In order to do so, a commercial numerical simulation solver (FLUENT) is used to find the most suitable...
Job Scheduling in a Single Machine with Ability to Run Jobs in Parallel
, M.Sc. Thesis Sharif University of Technology ; Abam, Mohammad Ali (Supervisor)
Abstract
This thesis introduces and investigates a new kind of scheduling model, in which the total amount of computational resources to be allocated at each moment by the processor is constrained and upper bounded by a constant. The time for a task to be executed is also dependent on the computational resources, dedicated to it by the processor, assuming that the multiplication of the execution time by the dedicated computational resources is a constant for each job. We investigate various objective functions, such as minimizing the number of tardy jobs, minimizing maximum latency and etc, under varying constraints. The investigated objective functions are: a) Minimize number of tardy jobs b)...
Nanocomposite of chitosan/gelatin/carbon quantum dots as a biocompatible and efficient nanocarrier for improving the Curcumin delivery restrictions to treat brain cancer
, Article International Journal of Biological Macromolecules ; Volume 242 , 2023 ; 01418130 (ISSN) ; Pourmadadi, M ; Shamsabadipour, A ; Mashayekh, P ; Sharif University of Technology
Elsevier B.V
2023
Abstract
Curcumin (CUR) is among the most appropriate and natural-based anticancer drugs that can be applied effectively treat different classes of cancers. However, CUR suffers from a low half-life and stability in the body, which has restricted the efficacy of its delivery applications. This study is dedicated to introducing the pH-sensitive nanocomposite of chitosan (CS)/gelatin (GE)/carbon quantum dots (CQDs) as an applicable nanocarrier for enhancing CUR half-life and its delivery restrictions. The CS/GE hydrogel was synthesized by the physical crosslinking method, which improves the biocompatibility of this hydrogel. Moreover, the water-in-oil-in-water (W/O/W) double emulsion approach is...
Designing a Hybrid Brain Computer Interface System
, M.Sc. Thesis Sharif University of Technology ; Shamsollahi, Mohammad Bagher (Supervisor)
Abstract
Brain Computer Interface (BCI) is a communication system between human brain and a computer or a peripheral device which by recording brain signals directly would send messages and commands from the human brain to computer.According to brain activity patterns of EEG, BCIs are divided into different types. The most important of these patterns called ERP (Event Related Potentials) which appears after particular events in the EEG signal. A significant ERP pattern is P300 potential. It occurs when patient recognizes oddball stimuli. SSVEP (Steady-State Visual Evoked Potential) is another type of patterns and is response of the brain to optical stimulations with certain frequencies and a strong...
Numerical Simulation of Compressible Magnetohydrodynamic Flow Using Spectral Difference Method on Quadrilateral Grids
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
In the present work, the numerical solution of 2D inviscid compressible Magneto-hydrodynamic flow is performed by using the spectral difference (SD) method on quadrilateral grids. In this numerical method, similar to the discontinuous Galerkin (DG) and spectral volume (SV) methods, the concept of the discontinuous and high-order local representations is used to achieve conservation property and high-order accuracy. In the SD method, the test function or the surface integral is not involved and thus it has a simpler formulation than the DG and SV methods. In this numerical method, two sets of structured points, namely unknown points and flux points, are defined in each cell to support the...
Implementing Appropriate Numerical Filters in the Lattice Boltzmann Method for Solving Multiphase Incompressible Flows with Large Density Ratio
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
In this study, two finite-difference lattice Boltzmann methods (FDLBM) are applied and assessed for the simulation of two-phase liquid-vapor flows with high density ratios. For this aim, the He-Shan-Doolen type lattice Boltzmann multiphase model is used and the spatial derivatives in the resulting system of equations are discretized by using the second-order central difference and modified Lax-Wendroff schemes. Suitable numerical dissipation terms and filters are applied to regularize the numerical solution and remove spurious waves generated by flow nonlinearities in smooth regions and at the same time to remove the numerical oscillations in the interface region of the two phases.Three...
Synthesis and Study of Catalytic Activity of Iron (III)-bis(2-oxazolinyl) Methane complex by Urea Hydrogen Peroxide in Oxidation of Sulfides
, M.Sc. Thesis Sharif University of Technology ; Bagherzadeh, Mojtaba (Supervisor)
Abstract
Considerable effort has been directed in recent years towards the transition metal complex catalyzed oxidation of organic compounds. Herein the synthsis of the iron complex of bis(oxazoline) ligand as a novel catalyst is reported, and the catalytic activity of this complex in oxidation of sulfides is investigated. Bis(2-oxazolynil)methane as ligand is prepared by condensation of diethylmalonate with 2-aminoethanole in 1:2 molar ratio and finally corresponding complex is synthesized by the reaction between FeCl3.6H2O and Bis(2-Oxazolynil)methane in 1:1 molar ratio. The complex is characterized by using IR, UV-Vis, cyclic voltametery, conductometery and elemental analysis data. Moreover,...
Development of Characteristic Boundary Conditions with Artificial Compressibility Method by Compact Finite-Difference Discretization
, Ph.D. Dissertation Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
In the present study, the preconditioned incompressible Navier‐Stokes equations with the artificial compressibility (AC) method formulated in the generalized curvilinear coordinates are numerically solved by using a high‐order compact finite‐difference scheme for accurately and efficiently computing the incompressible flows. A fourth‐order compact finite‐difference scheme is utilized to discretize the spatial derivative terms of the resulting system of equations and the time integration is carried out based on the dual time‐stepping method. The capability of the proposed solution methodology for computing the steady and unsteady incompressible viscous flows in a wide range of Reynolds...
Numerical Simulation of Natural Convection Using Smoothed Particle Hydrodynamics with Artificial Compressibility Method
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
In this research, the numerical simulation of the natural convection is performed by using the smoothed particle hydrodynamics based on the artificial compressibility method. For this aim, the formulation of the artificial compressibility method in the Eulerian reference frame for the mass and momentum equations is written in the Lagragian reference frame and the Lagrangin form of the energy equation is also considered to compute the thermal effects. The benefit of the artificial compressibility-based incompressible SPH (ACISPH) method over the weakly compressible SPH (WCSPH) method for computing the natural convection is that there is no need in the formulation considered here to use any...
Numerical Simulation of 2D Compressible Cavitation Flow Using Compact Finite-Difference Method
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
In the present study, the numerical simulation of 2D inviscid compressible cavitation flow is performed by using the compact finite-difference method. The problem formulation is based on the multiphase compressible Euler equations with the assumption of the homogeneous equilibrium model and the system of baseline differential equations is comprised of the continuity, momentum and energy equations for the vapor-liquid mixture. To complete the system of governing equations, the ideal gas relation is used for the vapor phase and the Tait relation is applied for the liquid phase, and therefore, the compressibility effects are considered for both the vapor and liquid phases. To analyze the flow...
Numerical Simulation of Shock-Disturbances Interaction in 2-D Compressible Flows Considering Real Gas Effects by Using WENO Method
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
In the present study, the shock-disturbances interaction in hypersonic inviscid flows considering real gas effects is numerically studied by using a high-order WENO scheme. To account for real gas effects, the equilibrium air model is utilized. The strong conservative form of the two-dimensional unsteady Euler equations in the generalized curvilinear coordinates is considered as the governing equations and a shock-capturing technique is applied. The resulting system of equations is discretized by using the fifth-order WENO finite-difference scheme in space and the explicit third-order TVD Runge-Kutta scheme in time to provide a high-order accurate flow solver. The WENO scheme is a stable scheme...
Numerical Solution of Hypersonic Axisymmetric Flows Including Real Gas Effects Using Compact Finite-Difference Scheme
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
The numerical solution of the parabolized Navier-Stokes (PNS) equations for accurate computation of hypersonic axisymmetric flowfield with real gas effects is obtained by using the fourth-order compact finite-difference method. The PNS equations in the general curvilinear coordinates are solved by using the implicit finite-difference algorithm of Beam and Warming type with a high-order compact accuracy. A shock fitting procedure is utilized in the compact PNS scheme to obtain accurate solutions in the vicinity of the shock. To stabilize the numerical solution, numerical dissipation term and filters are used. The main advantage of the present formulation is that the basic flow variables...
The numerical solution of the parabolized Navier-Stokes (PNS) equations for accurate computation of hypersonic axisymmetric flowfield with real gas effects is obtained by using the fourth-order compact finite-difference method. The PNS equations in the general curvilinear coordinates are solved by using the implicit finite-difference algorithm of Beam and Warming type with a high-order compact accuracy. A shock fitting procedure is utilized in the compact PNS scheme to obtain accurate solutions in the vicinity of the shock. To stabilize the numerical solution, numerical dissipation term and filters are used. The main advantage of the present formulation is that the basic flow variables...
Developing a Compact Finite Difference Method for Solving Fluid - Solid Interaction in Incompressible Flow
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
In this study, fluid-solid interaction (FSI) is simulated computationally by using a high-order accurate numerical method. The two-dimensional incompressible viscous flows are considered in the fluid domain. The primary problem with solutions of the incompressible Navier–Stokes equations is the difficulty of coupling changes in the velocity field with changes in the pressure field while satisfying the continuity equation. Herein, the artificial compressibility method is used to overcome this difficulty. Preconditioning is implemented to reduce the stiffness of the system of equations to increase the convergence rate of the solution. Using preconditioning, physical solutions even at low...
Numerical Simulation Cavitating Flows Using Compact Finite-difference Scheme
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
In the study, the simulation of two-dimensional cavitating flows is performed by applying a high-order accurate numerical method to the preconditioned, homogenous, multiphase Navier-Stokes equations. The baseline differential equations system is comprised of the mixture volume, mixture momentum and constituent volume fraction equations. A coordinate transformation is applied and the resulting system of governing equations in curvilinear coordinates is discretized using a fourth-order compact finite-difference scheme. The high-order accurate numerical scheme employing the suitable linear and nonlinear filters to account for density jumps across the cavity interface is shown to yield an...
Numerical Simulation of Incompressible Flows over two Dimensional Geometries by Means of Immersed Boundary Method
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
Two-dimensional incompressible flow analysis is one the most important applied issues in engineering and applied science field. Numerical solution of governing equations of flow requires exact computational grid generation.In complex geometries, generation of the grid which is coincident to the body is very difficult and time consuming. Immersed boundary method is an appropriate superseded method of body conformal grid generation in flow field numerical solution. In this method a grid which is not coincidentto bodyis generated and flow field properties are modified on points adjacent to the boundary of the object (Ghost Cell Method) to satisfy boundary conditions.
The purpose of this...
The purpose of this...
Numerical Simulation of Cavitating Flows with Compressibility Effects
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
In this study, the numerical simulation of cavitating flows with compressibility effects is performed. The algorithm employs the multiphase Euler equations with homogeneous equilibrium model. The baseline differential equations system is similar to the one-phase system of equations and comprised of the mixture density, mixture momentums and mixture energy equations. Thephases considered for cavitating flows is liquid-vapor and liquid-gas fields. The system of governing equations is discretized using a cell-centered finite volume AUSM’s upwind scheme. The computations are presented for steady noncavitating/cavitating flows around 1D/2Dproblems for different conditions. A sensitivity study is...
Numerical Simulation of Turbulent Cavitating Flows Using Two-Equation k-ϵ Turbulence Model
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
In the current study, the numerical simulation of the turbulent cavitating flows is performed by solving the preconditioned, homogenous, multiphase Navier-Stokes equations. For the turbulence modeling, the standard two-equation k-ϵ model is used. The baseline differential equations system is comprised of the mixture volume, mixture momentum and constituent volume fraction equations together with two equations for the turbulence kinetic energy k and the turbulence energy dissipation rate ϵ. For the calculation of the eddy viscosity near the wall boundary, appropriate turbulence damping functions are applied to modify the source terms of the ϵ equation. The system of governing equations is...
Central Difference Finite Volume Lattice Boltzmann Method for Simulation of Incompressible Electro-Magneto-Hydrodanamic Flows
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
In the present study, the simulation of incompressible Electro-Magneto-hydrodynamic flows is performed using a finite volume lattice Boltzmann method (FVLBM). The Boltzmann transport equation is solved using a cell-centered finite volume method on structured meshes. A central difference scheme is used to discretize the spatial derivatives and the fourth-order numerical dissipation term is added to stabilize the solution. To discretize the temporal derivative, the fourth-order Runge-Kutta time stepping scheme is applied. The standard collision-streaming lattice Boltzmann method has been used to simulate EMHD flows in the literature, however, it has several deficiencies such as the...