Loading...
Search for: mazaheri--k
0.173 seconds

    Simulation of DBD plasma actuator effect on aerodynamic performance improvement using a modified phenomenological model

    , Article Computers and Fluids ; Volume 140 , 2016 , Pages 371-384 ; 00457930 (ISSN) Mazaheri, K ; Omidi, J ; Chaharlang Kiani, K ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    An improved phenomenological model is presented for numerical simulation of a Dielectric Barrier Discharge (DBD) plasma actuator for separation control of high angle of attack flow over a wind turbine airfoil. Based on existing numerical models and experimental measurements, a new model is proposed for prediction of the length of a plasma extent which is more consistent with previous observations. The electrical and hydrodynamic solvers used in the present study are validated against published experimental data. Then the applicability of a DBD actuator, mounted on a DU 91-W2-250 airfoil is extensively analyzed for a wide range of operating voltages and frequencies. The analysis is completely... 

    Application of the adjoint multi-point and the robust optimization of shock control bump for transonic aerofoils and wings

    , Article Engineering Optimization ; Volume 48, Issue 11 , 2016 , Pages 1887-1909 ; 0305215X (ISSN) Mazaheri, K ; Nejati, A ; Chaharlang Kiani, K ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    A shock control bump (SCB) is a flow control method which uses a local small deformation in a flexible wing surface to considerably reduce the strength of shock waves and the resulting wave drag in transonic flows. Most of the reported research is devoted to optimization in a single flow condition. Here, both equally and variably weighted multi-point optimization and a robust adjoint optimization scheme are used to optimize the SCB. The numerical simulation of the turbulent viscous flow and a gradient-based adjoint algorithm are used to find the optimum location and shape of the SCB for two benchmark aerofoils. A multi-point optimization method under a constant-lift-coefficient constraint is... 

    Application of a modified algebraic heat-flux model and second-moment-closure to high blowing-ratio film-cooling and corrugated heat-exchanger simulations

    , Article Applied Thermal Engineering ; Volume 124 , 2017 , Pages 948-966 ; 13594311 (ISSN) Mazaheri, K ; Chaharlang Kiani, K ; Karimi, M ; Sharif University of Technology
    2017
    Abstract
    The present paper outlines the application of the recently proposed heat-flux model (Mazaheri et al., 2017) to high blowing-ratio film-cooling and corrugated heat-exchanger simulations. Here, the focus is mainly on the accuracy of the predicted thermal fields, while to find out the sources of inaccuracy detailed analysis of the adopted second-moment-closure hydrodynamic model is provided. To do so, fundamental benchmarks which contain the dominant phenomena in the main cases are thoroughly analyzed to identify the anomalies. Then, the main cases including leading-edge film-cooling, antivortex film-cooling and corrugated heat-exchanger are investigated. The numerical predictions indicate that... 

    A modified turbulent heat-flux model for predicting heat transfer in separating-reattaching flows and film cooling applications

    , Article Applied Thermal Engineering ; Volume 110 , 2017 , Pages 1609-1623 ; 13594311 (ISSN) Mazaheri, K ; Chaharlang Kiani, K ; Karimi, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The present study addresses a new effort to improve the prediction of the thermal field in separating-reattaching flows by making modifications in a low-Reynolds-number (LRN) version of HOGGDH heat-flux model proposed by Suga and Abe (2000). The modifications are based on introducing non-equilibrium effects of hydrodynamic flow field in the heat-flux model. Using an analytical approach, we have implemented P/ε, ignored in the base version, to the modified version. To do so, the model structure was changed and a damping function which is more sensitive to non-equilibrium flow features is also applied to the model. The modified heat-flux formulation along with a second moment closure... 

    The application of suction and blowing in performance improvement of transonic airfoils with shock control bump

    , Article Scientia Iranica ; Volume 24, Issue 1 , 2017 , Pages 274-292 ; 10263098 (ISSN) Mazaheri, K ; Nejati, A ; Charlang Kiani, K. C ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    Shock Control Bump (SCB) reduces the wave drag in transonic ight. To control the boundary layer separation and to reduce the wave drag for two transonic airfoils, RAE-2822 and NACA-64A010, we investigate the application of two flow control methods, i.e. suction and blowing, to add them to the SCB. An adjoint gradient-based optimization algorithm is used to find the optimum shape and location of SCB. The performance of both Hybrid Suction/SCB (HSS) and Hybrid Blowing/SCB (HBS) is a function of the sucked or injected mass flow rate and their position. A parametric study is performed to find the near optimum values of the aerodynamic coefficients and efficiency. A RANS solver is validated and... 

    The application of the gradient-based adjoint multi-point optimization of single and double shock control bumps for transonic airfoils

    , Article Shock Waves ; 2015 ; 09381287 (ISSN) Mazaheri, K ; Nejati, A ; Chaharlang Kiani, K ; Taheri, R ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    A shock control bump (SCB) is a flow control method which uses local small deformations in a flexible wing surface to considerably reduce the strength of shock waves and the resulting wave drag in transonic flows. Most of the reported research is devoted to optimization in a single flow condition. Here, we have used a multi-point adjoint optimization scheme to optimize shape and location of the SCB. Practically, this introduces transonic airfoils equipped with the SCB which are simultaneously optimized for different off-design transonic flight conditions. Here, we use this optimization algorithm to enhance and optimize the performance of SCBs in two benchmark airfoils, i.e., RAE-2822 and... 

    Erratum to: The application of the gradient-based adjoint multi-point optimization of single and double shock control bumps for transonic airfoils

    , Article Shock Waves ; Volume 26, Issue 4 , 2016 , Pages 533- ; 09381287 (ISSN) Mazaheri, K ; Nejati, A ; Kiani, K. C ; Taheri, R ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    Unfortunately, in the original online publication of the article, the quantity ω was incorrectly typeset as w in Eqs. (40) and (41). In Eq. (40), the subscript K was incorrectly typeset as k. The original publication of the article has been updated to reflect these changes  

    The application of the gradient-based adjoint multi-point optimization of single and double shock control bumps for transonic airfoils

    , Article Shock Waves ; Volume 26, Issue 4 , 2016 , Pages 491-511 ; 09381287 (ISSN) Mazaheri, K ; Nejati, A ; Chaharlang Kiani, K ; Taheri, R ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    A shock control bump (SCB) is a flow control method that uses local small deformations in a flexible wing surface to considerably reduce the strength of shock waves and the resulting wave drag in transonic flows. Most of the reported research is devoted to optimization in a single flow condition. Here, we have used a multi-point adjoint optimization scheme to optimize shape and location of the SCB. Practically, this introduces transonic airfoils equipped with the SCB that are simultaneously optimized for different off-design transonic flight conditions. Here, we use this optimization algorithm to enhance and optimize the performance of SCBs in two benchmark airfoils, i.e., RAE-2822 and... 

    A mass conservative scheme for simulating shallow flows over variable topographies using unstructured grid

    , Article Advances in Water Resources ; Volume 28, Issue 5 , 2005 , Pages 523-539 ; 03091708 (ISSN) Mohamadian, A ; Le Roux, D. Y ; Tajrishi, M ; Mazaheri, K ; Sharif University of Technology
    2005
    Abstract
    Most available numerical methods face problems, in the presence of variable topographies, due to the imbalance between the source and flux terms. Treatments for this problem generally work well for structured grids, but most of them are not directly applicable for unstructured grids. On the other hand, despite of their good performance for discontinuous flows, most available numerical schemes (such as HLL flux and ENO schemes) induce a high level of numerical diffusion in simulating recirculating flows. A numerical method for simulating shallow recirculating flows over a variable topography on unstructured grids is presented. This mass conservative approach can simulate different flow... 

    Mesoporous silica nanoparticles (MCM-41) coated PEGylated chitosan as a pH-Responsive nanocarrier for triggered release of erythromycin [electronic resource]

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; 2014, Volume 63, Issue 13, Pages 692-697 Pourjavadi, A. (Ali) ; Mazaheri Tehrani, Zahra ; Sharif University of Technology
    Abstract
    A pH-responsive drug delivery system based on core shell structure of mesoporous silica nanoparticle (MSN) and chitosan-PEG copolymer was prepared and characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and high-resolution transmission microscope (HR-TEM) techniques. In order to improve compatibility MSN and drug, mesoporous nanosilica was modified by 3-aminopropyl triethoxysilane. The release of erythromycin (a macrolide antibiotic) as a model drug was investigated in two pHs, 7.4 and 5.5  

    Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation [electronic resource]

    , Article Journal of Applied Surface Science ; 15 May 2014, Volume 301, Pages 456–462 Mazaheri, M ; Akhavan, O ; Simchi, A. (Abdolreza) ; Sharif University of Technology
    Abstract
    Graphene oxide (GO)–chitosan composite layers with stacked layer structures were synthesized using chemically exfoliated GO sheets (with lateral dimensions of ∼1 μm and thickness of ∼1 nm), and applied as antibacterial and flexible nanostructured templates for stem cell proliferation. By increasing the GO content from zero to 6 wt%, the strength and elastic modulus of the layers increased ∼80% and 45%, respectively. Similar to the chitosan layer, the GO–chitosan composite layers showed significant antibacterial activity (>77% inactivation after only 3 h) against Staphylococcus aureus bacteria. Surface density of the actin cytoskeleton fibers of human mesenchymal stem cells (hMSCs) cultured... 

    An MPC method based on a hybrid model of a three-phase inverter with output LC- filter

    , Article 2012 3rd Power Electronics and Drive Systems Technology, PEDSTC 2012, 15 February 2012 through 16 February 2012 ; February , 2012 , Pages 170-174 ; 9781467301114 (ISBN) Mazaheri, B ; Mokhtari, H ; Sharif University of Technology
    2012
    Abstract
    Controlling inverters with LC output filters in order to achieve a high quality desired output voltage or current is a challenging problem in power electronics. The LC filter and the binary nature of switch state variables increase the difficulty of achieving a single comprehensive model for the system. In this paper, a hybrid model is presented for a three-phase inverter with an LC output filter and a three-phase RL load. Then, the Model Predictive Control (MPC) algorithm is applied to the model and a geometrical approximate method is used to fit the answers to the binary values. Simulation results for a sample system verify the usability of the method and the quality of the answers  

    Experimental investigation on aerodynamic performance of a flapping wing vehicle in forward flight

    , Article Journal of Fluids and Structures ; Volume 27, Issue 4 , 2011 , Pages 586-595 ; 08899746 (ISSN) Mazaheri, K ; Ebrahimi, A ; Sharif University of Technology
    2011
    Abstract
    The aerodynamic performance of a flexible membrane flapping wing has been investigated here. For this purpose, a flapping-wing system and an experimental set-up were designed to measure the unsteady aerodynamic forces of the flapping wing motion. A one-component force balance was set up to record the temporal variations of aerodynamic forces. The flapping wing was studied in a large low-speed wind tunnel. The lift and thrust of this mechanism were measured for different flapping frequencies, angles of attack and for various wind tunnel velocities. Results indicate that the thrust increases with the flapping frequency. An increase in the wind tunnel speed and flow angle of attack leads to... 

    Electrical behavior of nano-polycrystalline (La1-yK y)0.7Ba0.3MnO3 manganites

    , Article Journal of Magnetism and Magnetic Materials ; Volume 322, Issue 21 , November , 2010 , Pages 3255-3261 ; 03048853 (ISSN) Mazaheri, M ; Akhavan, M ; Sharif University of Technology
    2010
    Abstract
    We present a study of the structural and electrical behavior of nano-polycrystalline mixed barium and alkali substituted lanthanum-based manganite, (La1-yKy)0.7Ba0.3MnO 3 with y=0.00.3. The samples were synthesized by the polymerization complex solgel method. The powder X-ray diffraction (XRD) data of the samples show a single-phase character with R3c space group. The magnetic and electrical transport properties of the nano-polycrystalline samples have been investigated in the temperature range 50300 K and a magnetic field up to 10 kOe. The metalinsulator transition temperature Tp of all the samples decreased with potassium doping, and also, it increased slightly with the application of... 

    Experimental study on interaction of aerodynamics with flexible wings of flapping vehicles in hovering and cruise flight

    , Article Archive of Applied Mechanics ; Volume 80, Issue 11 , 2010 , Pages 1255-1269 ; 09391533 (ISSN) Mazaheri, K ; Ebrahimi, A ; Sharif University of Technology
    2010
    Abstract
    Flapping wings are promising lift and thrust generators, especially for very low Reynolds numbers. To investigate aeroelastic effects of flexible wings (specifically, wing's twisting stiffness) on hovering and cruising aerodynamic performance, a flapping-wing system and an experimental setup were designed and built. This system measures the unsteady aerodynamic and inertial forces, power usage, and angular speed of the flapping wing motion for different flapping frequencies and for various wings with different chordwise flexibility. Aerodynamic performance of the vehicle for both no wind (hovering) and cruise condition was investigated. Results show how elastic deformations caused by... 

    Preparation and characterization of nano-polycrystalline lanthanum-based manganite (La1 - y Ky)0.7 Ca0.3 MnO3

    , Article Physica B: Condensed Matter ; Volume 405, Issue 1 , 2010 , Pages 72-76 ; 09214526 (ISSN) Mazaheri, M ; Akhavan, M ; Sharif University of Technology
    2010
    Abstract
    A series of nano-polycrystalline alkali metal doped in La-based manganites (La1 - y Ky)0.7 Ca0.3 MnO3 samples (y = 0.0, 0.1, 0.2, and 0.3) were synthesized using the polymerical complex sol-gel method. The structural properties are studied via the X-ray diffraction experiments, and results are refined by the Rietveld method. The electrical transport properties of the polycrystalline samples have been investigated in the temperature range 50-300 K and a magnetic field up to 10 kOe. The metal-insulator transition temperature (Tp) changes with doping due to the difference between the electron configuration and ionic radius of the dopants and manganese trivalent ions. Characteristic grain... 

    Experimental investigation of the effect of chordwise flexibility on the aerodynamics of flapping wings in hovering flight

    , Article Journal of Fluids and Structures ; Volume 26, Issue 4 , May , 2010 , Pages 544-558 ; 08899746 (ISSN) Mazaheri, K ; Ebrahimi, A ; Sharif University of Technology
    2010
    Abstract
    Ornithopters or mechanical birds produce aerodynamic lift and thrust through the flapping motion of their wings. Here, we use an experimental apparatus to investigate the effects of a wing's twisting stiffness on the generated thrust force and the power required at different flapping frequencies. A flapping wing system and an experimental set-up were designed to measure the unsteady aerodynamic and inertial forces, power usage and angular speed of the flapping wing motion. A data acquisition system was set-up to record important data with the appropriate sampling frequency. The aerodynamic performance of the vehicle under hovering (i.e., no wind) conditions was investigated. The lift and... 

    Numerical optimization of laboratory combustor geometry for NO suppression

    , Article Applied Thermal Engineering ; Volume 102 , 2016 , Pages 1328-1336 ; 13594311 (ISSN) Mazaheri, K ; Shakeri, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this article, geometry optimization of a jet stirred reactor (JSR) combustor has been carried out for minimum NO emissions in methane oxidation using a combined numerical algorithm based on computational fluid dynamics (CFD) and differential evolution (DE) optimization. The optimization algorithm is also used to find a fairly accurate reduced mechanism. The combustion kinetics is based on a five-step mechanism with 17 unknowns which is obtained using an optimization DE algorithm for a PSR-PFR reactor based on GRI-3.0 full mechanism. The optimization design variables are the unknowns of the five-step mechanism and the cost function is the concentration difference of pollutants obtained... 

    The multi-point optimization of shock control bump with constant-lift constraint enhanced with suction and blowing for a supercritical airfoil

    , Article Flow, Turbulence and Combustion ; Volume 96, Issue 3 , 2016 , Pages 639-666 ; 13866184 (ISSN) Mazaheri, K ; Nejati, A ; Sharif University of Technology
    2016
    Abstract
    Both shock control bump (SCB) and suction and blowing are flow control methods used to control the shock wave/boundary layer interaction (SWBLI) in order to reduce the resulting wave drag in transonic flows. A SCB uses a small local surface deformation to reduce the shock-wave strength, while suction decreases the boundary-layer thickness and blowing delays the flow separation. Here a multi-point optimization method under a constant-lift-coefficient constraint is used to find the optimum design of SCB and suction and blowing. These flow control methods are used separately or together on a RAE-2822 supercritical airfoil for a wide range of off-design transonic Mach numbers. The RANS flow... 

    Numerical study of pollutant emissions in a Jet stirred reactor under elevated pressure Lean premixed conditions

    , Article Mathematical Problems in Engineering ; Volume 2016 , 2016 ; 1024123X (ISSN) Mazaheri, K ; Shakeri, A ; Sharif University of Technology
    Hindawi Publishing Corporation  2016
    Abstract
    Numerical study of pollutant emissions (NO and CO) in a Jet Stirred Reactor (JSR) combustor for methane oxidation under Elevated Pressure Lean Premixed (EPLP) conditions is presented. A Detailed Flow-field Simplified Chemistry (DFSC) method, a low computational cost method, is employed for predicting NO and CO concentrations. Reynolds Averaged Navier Stokes (RANS) equations with species transport equations are solved. Improved-coefficient five-step global mechanisms derived from a new evolutionary-based approach were taken as combustion kinetics. For modeling turbulent flow field, Reynolds Stress Model (RSM), and for turbulence chemistry interactions, finite rate-Eddy dissipation model are...