Loading...
Search for: moghadam--a
0.152 seconds

    Nonlinear analysis of masonry-infilled steel frames with openings using discrete element method

    , Article Journal of Constructional Steel Research ; Volume 64, Issue 12 , 2008 , Pages 1463-1472 ; 0143974X (ISSN) Mohebkhah, A ; Tasnimi, A. A ; Moghadam, H. A ; Sharif University of Technology
    2008
    Abstract
    Nonlinear numerical modeling of masonry-infilled frames is one of the most complicated problems in structural engineering field. This complexity is attributed to the existence of joints as the major source of weakness and material nonlinearities as well as the infill-frame interaction which cannot be properly modeled using the traditional finite element methods. Although there are many numerical studies available on solid masonry-infilled steel frames' behavior, however, few researches have been conducted on infilled frames with openings. In this paper a two-dimensional numerical model using the specialized discrete element method (DEM) software UDEC (2004) is developed for the nonlinear... 

    Sensorless control of PMSMs with tolerance for delays and stator resistance uncertainties

    , Article IEEE Transactions on Power Electronics ; Volume 28, Issue 3 , 2013 , Pages 1391-1399 ; 08858993 (ISSN) Moghadam, M. A. G ; Tahami, F ; Sharif University of Technology
    2013
    Abstract
    Position sensorless control of ac machines at zero and low speed is possible using high-frequency carrier injection methods. These methods utilize anisotropic properties of rotor. Therefore, they may lose their efficiency for nonsalient machines or machines with small rotor saliency. In these machines, measurement noise and offset, existing delays, as well as model uncertainties may lead to inaccurate estimation of rotor position. Stator resistance which is usually neglected in these methods may also lead to a considerable error especially in machines with small rotor saliency. In this paper, a new position estimation method is presented, and it is shown that in comparison to conventional... 

    Developing 3D neutron transport kernel for heterogeneous structures in an improved method of characteristic (MOC) framework

    , Article Progress in Nuclear Energy ; Volume 127 , 2020 Porhemmat, M. H ; Hadad, K ; Salehi, A. A ; Moghadam, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Given the importance and complexity of the three-dimensional (3D) neutron transport equation solution, in the current research, a new Modular Ray Tracing (MRT) Algorithm and 3D characteristic kernel for heterogeneous structures are presented. Improvement of memory management and cache coherency are achieved to some acceptable level. Also, parallel implementation of transport algorithm utilizing OpenMP, cause significant reduction in runtime. To validate our Algorithm, first, a self-constituted pin cell and a lattice arrangement are modeled and results are compared with Monte-Carlo simulation. Second, the well-known 3D benchmark, Takeda model one and two, are investigated and results compared... 

    A probabilistic artificial neural network-based procedure for variance change point estimation

    , Article Soft Computing ; Vol. 19, issue. 3 , May , 2014 , pp. 691-700 ; ISSN: 14327643 Amiri, A ; Niaki, S. T. A ; Moghadam, A. T ; Sharif University of Technology
    2014
    Abstract
    Control charts are useful tools of monitoring quality characteristics. One of the problems of employing a control chart is that the time it alarms is not synchronic with the time when assignable cause manifests itself in the process. This makes difficult to search and find assignable causes. Knowing the real time of manifestation of assignable cause (change point) helps to find assignable cause(s) sooner and eases corrective actions to be taken. In this paper, a probabilistic neural network (PNN)-based procedure was developed to estimate the variance change point of a normally distributed quality characteristic. The PNN was selected based on trial and error among different types of... 

    Erratum to: clinical application of a humanoid robot in pediatric cancer interventions (Int J of Soc robotics, 10.1007/s12369-015-0294-y)

    , Article International Journal of Social Robotics ; Volume 8, Issue 5 , 2016 , Pages 761- ; 18754791 (ISSN) Alemi, M ; Ghanbarzadeh, A ; Meghdari, A ; Jafari Moghadam, L ; Sharif University of Technology
    Springer Netherlands  2016
    Abstract
    A substantial part of this paperwas published in volume 8755 of the series LectureNotes in Computer Science, page 11–22, Title of the book: Social Robotics, 6th International Conference, ICSR 2014, Sydney, NSW, Australia, October 27–29, 2014, ISBN: 978-3-319-11972-4, article title: Impact of a Social Humanoid Robot as a Therapy Assistant in Children Cancer Treatment, by Minoo Alemi, Ali Meghdari, Ashkan Ghanbarzadeh, Leila Jafari Moghadam and Anooshe Ghanbarzadeh. The authors apologize for not having referenced to the previously published article  

    An unbreakable on-line approach towards sol-gel capillary microextraction

    , Article Journal of Chromatography A ; Volume 1218, Issue 26 , 2011 , Pages 3952-3957 ; 00219673 (ISSN) Bagheri, H ; Piri-Moghadam, H ; Es'haghi, A ; Sharif University of Technology
    2011
    Abstract
    In this work a novel unbreakable sol-gel-based in-tube device for on-line solid phase microextraction (SPME) was developed. The inner surface of a copper tube, intended to be used as a high performance liquid chromatography (HPLC) loop, was electrodeposited by metallic Cu followed by the self assembled monolayers (SAM) of 3-(mercaptopropyl) trimethoxysilane (3MPTMOS). Then, poly (ethyleneglycol) (PEG) was chemically bonded to the -OH sites of the SAM already covering the inner surface of the copper loop using sol-gel technology. The homogeneity and the porous surface structure of the SAM and sol-gel coatings were examined using the scanning electron microscopy (SEM) and adsorption/desorption... 

    Self-powered wearable piezoelectric sensors based on polymer nanofiber-metal-organic framework nanoparticle composites for arterial pulse monitoring

    , Article ACS Applied Nano Materials ; Volume 3, Issue 9 , August , 2020 , Pages 8742-8752 Hadavi Moghadam, B ; Hasanzadeh, M ; Simchi, A ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    High-performance wearable electronic devices with the capability of converting mechanical force into electrical energy have been gaining increasing attention for biomedical monitoring applications. We present a novel wearable piezoelectric sensor based on a poly(vinylidene fluoride) (PVDF) nanofibrous membrane containing microporous zirconium-based metal-organic frameworks (MOFs) for arterial pulse monitoring. It is shown that the incorporation of 5 wt % of MOF greatly enhances the piezoelectric constant of the polymer fibrous mat by 3.4-fold without significant loss in its flexibility. The nanofibrous composite exhibits a peak-to-peak voltage of 600 mV under an applied force of 5 N, which... 

    FEM elasto-plastic analysis of a new manufacturing method for covering the free surface of unidirectional composites

    , Article Computational Materials Science ; Volume 36, Issue 4 , 2006 , Pages 411-424 ; 09270256 (ISSN) Abedian, A ; Adibnazari, S ; Rashidi Moghadam, A ; Sharif University of Technology
    2006
    Abstract
    Fiber/matrix debonding at the free surface of unidirectional composites deteriorates their performance and ultimately reduces the working life of these materials. Identifying the source, controlling the propagation and elimination of the damages has been the subject of many research attempts. The results show that the singular radial thermal residual stress at the fiber/matrix interface on the free surface of composites is the main reason for initiation of the debonding. Also, it has been experimentally and numerically proven that a thin layer of matrix-like cover on the free surface could highly help in elimination and/or reduction of the damage. However, the results were limited to the... 

    Effect of utilizing a humanoid robot as a therapy-assistant in reducing anger, anxiety, and depression

    , Article 2014 2nd RSI/ISM International Conference on Robotics and Mechatronics, ICRoM 2014 ; 15- 17 October , 2014 , pp. 748-753 ; ISBN: 9781479967438 Alemi, M ; Meghdari, A ; Ghanbarzadeh, A ; Moghadam, L. J ; Ghanbarzadeh, A ; Sharif University of Technology
    2014
    Abstract
    Treatment of cancer involves many invasive procedures that could be a source of distress in kids suffering from cancer. Distress itself can be an important obstacle in patients' acceptance of treatment and their adaptation to it, consequently reducing its efficiency. Distress symptoms, in a spectrum from mild to critical, are shown to be widespread in children struggling with cancer. In recent years to alleviate this psychological condition, researchers have proposed and examined several methods such as relaxation, hypnosis, desensitization, and distraction. This study presents a new approach to explore the impact of utilizing a humanoid robot as a therapy-assistant in dealing with patients'... 

    Impact of a social humanoid robot as a therapy assistant in children cancer treatment

    , Article Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) ; Volume 8755 , 2014 , Pages 11-22 ; ISSN: 03029743 ; ISBN: 9783319119724 Alemi, M ; Meghdari, A ; Ghanbarzadeh, A ; Moghadam, L. J ; Ghanbarzadeh, A ; Sharif University of Technology
    2014
    Abstract
    Treating cancer encompasses many invasive procedures that can be a source of distress in oncology patients. Distress itself can be a major obstruction in the path of acceptance of treatment and the patient's adaptation to it, thereby reducing its efficiency. These distress symptoms have been found to be prevalent in children suffering from cancer, in a spectrum from mild to critical. In the past years in response to this psychological suffering, researchers have proposed and tested several methods such as relaxation, hypnosis, desensitization, and distraction. This paper propounds a new approach by exploring the effect of utilizing a humanoid robot as a therapy-assistive tool in dealing with... 

    Surface roughness of electrospun nanofibrous mats by a novel image processing technique

    , Article Surface Review and Letters ; Volume 26, Issue 1 , 2019 ; 0218625X (ISSN) Hadavi Moghadam, B ; Kasaei, S ; Haghi, A. K ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2019
    Abstract
    A novel technique based on image processing inspired by the simple assumption for the first time to assess the roughness of nanofibrous mats based on grayscale variations is proposed. The height of a nanofibrous mat in different regions of the surface is simulated by grayscale variations in the image while the relation between grayscale and height is obtained as a linear function. The roughness is obtained by measuring height variations in the surface profile. Statistical roughness parameters of nanofibrous mats are also obtained from direct measurement with roughness profilometry and atomic force microscopy (AFM) for comparison of the roughness of nanofibrous mats between direct measurement... 

    SURFACE roughness of electrospun nanofibrous mats by a novel image processing technique

    , Article Surface Review and Letters ; 2018 ; 0218625X (ISSN) Moghadam, B. H ; Kasaei, S ; Haghi, A. K ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2018
    Abstract
    A novel technique based on image processing inspired by the simple assumption for the first time to assess the roughness of nanofibrous mats based on grayscale variations is proposed. The height of a nanofibrous mat in different regions of the surface is simulated by grayscale variations in the image while the relation between grayscale and height is obtained as a linear function. The roughness is obtained by measuring height variations in the surface profile. Statistical roughness parameters of nanofibrous mats are also obtained from direct measurement with roughness profilometry and atomic force microscopy (AFM) for comparison of the roughness of nanofibrous mats between direct measurement... 

    Catalyst-Free and Green Synthesis of Some Novel Benzamide Derivatives

    , Article Journal of Heterocyclic Chemistry ; Volume 52, Issue 6 , November , 2015 , Pages 1848-1857 ; 0022152X (ISSN) Samani Ghaleh Taki, B ; Rostami, M ; Mirkhani, V ; Moghadam, M ; Mohammadpoor Baltork, I ; Tangestaninejad, S ; Jamali Moghadam, A ; Kia, R ; Sharif University of Technology
    HeteroCorporation  2015
    Abstract
    In the present work, a simple, green, rapid, and catalyst-free procedure for the synthesis of benzamide derivatives by ring opening of azlactones with diamines such as ethylene diamine and 1,3-propylenediamine is described. The present method offers several advantages such as short reaction times, easy work-up, and mild reaction conditions in the absence of catalyst and any toxic solvent and material. In addition, the structure obtained by X-ray crystallography was compared with the theoretical results obtained by density functional theory using the B3LYP functional and cc-pVDZ basis sets  

    Surface roughness of electrospun nanofibrous mats by a novel image processing technique

    , Article Surface Review and Letters ; Volume 26, Issue 1 , 2019 ; 0218625X (ISSN) Hadavi Moghadam, B. H ; Kasaei, S ; Khodaparast Haghi, A ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2019
    Abstract
    A novel technique based on image processing inspired by the simple assumption for the first time to assess the roughness of nanofibrous mats based on grayscale variations is proposed. The height of a nanofibrous mat in different regions of the surface is simulated by grayscale variations in the image while the relation between grayscale and height is obtained as a linear function. The roughness is obtained by measuring height variations in the surface profile. Statistical roughness parameters of nanofibrous mats are also obtained from direct measurement with roughness profilometry and atomic force microscopy (AFM) for comparison of the roughness of nanofibrous mats between direct measurement... 

    A combined micro-solid phase-single drop microextraction approach for trace enrichment of volatile organic compounds

    , Article Analytical Methods ; Volume 7, Issue 16 , Jun , 2015 , Pages 6514-6519 ; 17599660 (ISSN) Bagheri, H ; Zare, M ; Piri Moghadam, H ; Es haghi, A ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    An attempt was made to combine μ-solid phase extraction and headspace single drop microextraction techniques and use their advantages for trace determination of some volatile organic compounds in aqueous samples. After performing the two-step preconcentration approach, the desired analytes were determined by gas chromatography-mass spectrometry. A resorcinol-formaldehyde-based xerogel was used as the extraction medium in the μ-solid phase extraction (μ-SPE) method. Then, the extracted BTEX was eluted with a rather large amount of methanol. To remove the laborious process including solvent evaporation and further reconstitution, which is usually accompanied by loss of analytes and accuracy,... 

    Computational-based approach for predicting porosity of electrospun nanofiber mats using response surface methodology and artificial neural network methods

    , Article Journal of Macromolecular Science, Part B: Physics ; Volume 54, Issue 11 , 2015 , Pages 1404-1425 ; 00222348 (ISSN) Hadavi Moghadam, B ; Khodaparast Haghi, A ; Kasaei, S ; Hasanzadeh, M ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    Comparative studies between response surface methodology (RSM) and artificial neural network (ANN) methods to find the effects of electrospinning parameters on the porosity of nanofiber mats is described. The four important electrospinning parameters studied included solution concentration (wt.%), applied voltage (kV), spinning distance (cm) and volume flow rate (mL/h). It was found that the applied voltage and solution concentration are the two critical parameters affecting the porosity of the nanofiber mats. The two approaches were compared for their modeling and optimization capabilities with the modeling capability of RSM showing superiority over ANN, having comparatively lower values of... 

    New anti-ARM technique by using random phase and amplitude active decoys

    , Article Progress in Electromagnetics Research ; Volume 87 , 2008 , Pages 297-311 ; 10704698 (ISSN) Emadi, M ; Jafargholi, A ; Sargazi Moghadam, M. H ; Marvasti, F ; Sharif University of Technology
    Electromagnetics Academy  2008
    Abstract
    This paper presents a new method to counter Anti Radiation Missile (ARM) threats, which is effective against advanced ARM. By using random phase and amplitude active decoys in the specified optimum positions and network implementation we show that ARM threats will be removed profoundly. Also, iterative methods are presented to cancel the internal interference effects in the proposed structure  

    Optimum supply and threshold voltages and transistor sizing effects on low power SOI circuit design

    , Article APCCAS 2006 - 2006 IEEE Asia Pacific Conference on Circuits and Systems, 4 December 2006 through 6 December 2006 ; 2006 , Pages 1394-1398 ; 1424403871 (ISBN); 9781424403875 (ISBN) Emadi, M ; Jafargholi, A ; Sargazi Moghadam, H ; Nayebi, M. M ; Sharif University of Technology
    2006
    Abstract
    In this work we introduce new model for energy-delay product and the performance of 80-nm SOI-CMOS circuits for the range of Vdd=0.1-1.5V and Vth=0-0.8V, are analyzed to find optimal Vdd and Vth BSIMSOI3.3 model (level 57) is used to verify the answers. We show that Energy-Delay Product (EDP) isn't appropriate metric for gate sizing problem. And a new design metric is introduced as a generalization of EDP. This metric is used to determine the transistor sizing for complex circuits based on the specified delay and energy constrains. In this case, unlike the conventional energy delay product metric, delay and energy can be considered with different emphasis. The complete design flowcharts and... 

    Meta-aligner: long-read alignment based on genome statistics

    , Article BMC Bioinformatics ; Volume 18, Issue 1 , 2017 ; 14712105 (ISSN) Nashta Ali, D ; Aliyari, A ; Ahmadian Moghadam, A ; Edrisi, M. A ; Motahari, S. A ; Khalaj, B. H ; Sharif University of Technology
    2017
    Abstract
    Background: Current development of sequencing technologies is towards generating longer and noisier reads. Evidently, accurate alignment of these reads play an important role in any downstream analysis. Similarly, reducing the overall cost of sequencing is related to the time consumption of the aligner. The tradeoff between accuracy and speed is the main challenge in designing long read aligners. Results: We propose Meta-aligner which aligns long and very long reads to the reference genome very efficiently and accurately. Meta-aligner incorporates available short/long aligners as subcomponents and uses statistics from the reference genome to increase the performance. Meta-aligner estimates... 

    Efficient synthesis of novel coumarin-3-carboxamides (=2-oxo-2h-1- benzopyran-3-carboxamides) containing lipophilic spacers

    , Article Helvetica Chimica Acta ; Volume 95, Issue 3 , 2012 , Pages 528-535 ; 0018019X (ISSN) Balalaie, S ; Bigdeli, M. A ; Sheikhhosseini, E ; Habibi, A ; Moghadam, H. P ; Naderi, M ; Sharif University of Technology
    2012
    Abstract
    The novel coumarin-3-carboxamides (=2-oxo-2H-1-benzopyran-3-carboxamides) 5a-5g containing lipophilic spacers were synthesized through the Ugi-four-component reaction (Scheme 1). The reactions of aromatic aldehydes 1, 4,4'-oxybis[benzenamine] or 4,4'-methylenebis[benzenamine] as diamine 2, coumarin-3-carboxylic acid (=2-oxo-2H-benzopyran-3-carboxylic acid; 3), and alkyl isocyanides 4 lead to the desired substituted coumarin-3-carboxamides 5a-5g at room temperature with high bond-forming efficiency. These novel coumarin derivatives exhibit brilliant fluorescence at 544 nm in CHCl 3