Loading...
Search for: mohamadian--n
0.122 seconds

    Investigation of the electronic structure of tetragonal B3N3 under pressure

    , Article Applied Physics A: Materials Science and Processing ; Volume 124, Issue 5 , 2018 ; 09478396 (ISSN) Mohamadian, A ; Bagheri, M ; Faez, R ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    In this paper, we perform self-consistent field relaxation and electronic structure calculations of tetragonal B3N3 based on density functional theory, using LDA pseudopotential in the pressure range between − 30 and + 160 GPa. Although metallic B3N3 has a honeycomb structure, according to the electronic band structure, it has bulk properties (not layered) with effective mass non-interacting electron gas behavior near Fermi level (not Dirac massless) and a small anisotropy, about 0.56 in effective mass in the direction of MA relative to XM. Electronic calculations of the B3N3 under pressure show that increasing positive pressure causes the decrease of Fermi energy and total electronic... 

    E-policy making: A system approach based on evaluting ICT's impacts

    , Article 2006 IEEE International Conference on Service Operations and Logistics, and Informatics, SOLI 2006, Shanghai, 21 June 2006 through 23 June 2006 ; 2006 , Pages 34-39 ; 1424403189 (ISBN); 9781424403189 (ISBN) Mohamadian, A ; Elahi, S ; Ghasemzadeh, F ; Sharif University of Technology
    2006
    Abstract
    Information and Communication Technologies (ICTs) are now widely accepted by developing countries as a critical tool in their efforts, so policy makers should develop ICT policies or e-policies in order to monitor and evaluate political, socio-economic and cultural impacts of ICT and also measure progress in the use of ICTs to achieve the development strategies and policies. The paper focuses on the ICT's impacts as an important part in developing e-policies, including a comprehensive model based on system approach, appropriate frameworks for determining affecting and affected elements of ICT and a conceptual framework for analyzing and prioritizing different dimensions of the society. The... 

    Prediction of roadway accident frequencies: Count regressions versus machine learning models

    , Article Scientia Iranica ; Vol. 21, issue. 2 , 2014 , p. 263-275 ; 10263098 Nassiri, H ; Najaf, P ; Mohamadian Amiri, A ; Sharif University of Technology
    2014
    Abstract
    Prediction of accident frequency based on traffic and roadway characteristics has been a very significant tool in the field of traffic management. The accident frequencies on 185 roadway segments of the city of Mashhad, Iran, for the year 2007, were used to develop accident prediction models. Negative Binomial Regression, Zero Inated Negative Binomial Regression, Support Vector Machine and Back-Propagation Neural Network models were used to fit the accident data. Both fitting and predicting abilities of the models were evaluated through computing error values. Results show that the NBR model is the most effective model for predicting the number of accidents because of its low prediction and... 

    Accident Prediction Model Based on Macroscopic Traffic Characteristics

    , M.Sc. Thesis Sharif University of Technology Mohamadian Amiri, Amir (Author) ; Nassiri, Habibollah (Supervisor)
    Abstract
    Lately, there has been a great attention to accident prediction methods in traffic management. The importance of predicting an accident is because of its enormous effect on reducing casualties, injuries, property damages and delays. The main objectivein this study was to identify the relationship between accidents frequency rates and geometric design variables, climatic parameters and traffic characteristics using probabilistic models. The other objective was to evaluate the crash severity and crash type. Therefore, the 1997 traffic accident statistics of city of Mashhad in Iran was used for the for the modeling of different highway classification. Probabilistic models are used for... 

    Adaptive neuro-fuzzy algorithm applied to predict and control multi-phase flow rates through wellhead chokes

    , Article Flow Measurement and Instrumentation ; Volume 76 , 2020 Ghorbani, H ; Wood, D. A ; Mohamadian, N ; Rashidi, S ; Davoodi, S ; Soleimanian, A ; Kiani Shahvand, A ; Mehrad, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    A Takagi-Sugeno adaptive neuro-fuzzy inference system (TSFIS) model is developed and applied to a dataset of wellhead flow-test data for the Resalat oil field located offshore southern Iran, the objective is to assist in the prediction and control of multi-phase flow rates of oil and gas through the wellhead chokes. For this purpose, 182 test data points (Appendix 1) related to the Resalat field are evaluated. In order to predict production flow rate (QL) expressed as stock-tank barrels per day (STB/D), this dataset includes four selected input variables: upstream pressure (Pwh); wellhead choke sizes (D64); gas to liquid ratio (GLR); and, base solids and water including some water-soluble... 

    A hybrid nanocomposite of poly(styrene-methyl methacrylate- acrylic acid) /clay as a novel rheology-improvement additive for drilling fluids

    , Article Journal of Polymer Research ; Volume 26, Issue 2 , 2019 ; 10229760 (ISSN) Mohamadian, N ; Ghorbani, H ; Wood, D. A ; Abdollahi Khoshmardan, M ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    The hybrid-polymer nanocomposite poly(styrene-methyl methacrylate- acrylic acid) /nanoclay was synthesized by miniemulsion polymerization for novel use as a drilling fluid additive. Three low-solid-drilling fluids (bentonite-based; natural polymer-based; nanoclay-based) were formulated using the hybrid nanocomposite as an additive and their rheological performance compared. The polymer/clay hybrid nanoparticles significantly improve rheological and filtration properties of the drilling fluids and they remain stable at high pressure, high temperature and harsh salinity conditions. The fluids’ filtration properties improve as the concentration of the polymer/nanoclay-hybrid-nanoparticles... 

    Two-dimensional model for lateral intake flows

    , Article Proceedings of the Institution of Civil Engineers: Water Management ; Volume 158, Issue 4 , 2005 , Pages 141-150 ; 17417589 (ISSN) Kolahdoozan, M ; Taher Shamsi, A ; Sadeghi Bagheney, M ; Mohamadian, A ; Sharif University of Technology
    ICE Publishing  2005
    Abstract
    This paper gives details of the refinement and application of a two-dimensional horizontal model for rivers. An explicit finite-difference algorithm was used for solving the governing differential equations, which includes the conservation of mass and momentum to predict hydrodynamic parameters. The model includes different turbulence closure models - that is, constant eddy viscosity, Prandtl simple mixing length and Smagorinsky methods. An experimental programme was designed and carried out in a laboratory flume to measure the length of eddy produced at the entrance of the intake. Model predictions have been compared with experimental results for a lateral intake. The effect of different... 

    A mass conservative scheme for simulating shallow flows over variable topographies using unstructured grid

    , Article Advances in Water Resources ; Volume 28, Issue 5 , 2005 , Pages 523-539 ; 03091708 (ISSN) Mohamadian, A ; Le Roux, D. Y ; Tajrishi, M ; Mazaheri, K ; Sharif University of Technology
    2005
    Abstract
    Most available numerical methods face problems, in the presence of variable topographies, due to the imbalance between the source and flux terms. Treatments for this problem generally work well for structured grids, but most of them are not directly applicable for unstructured grids. On the other hand, despite of their good performance for discontinuous flows, most available numerical schemes (such as HLL flux and ENO schemes) induce a high level of numerical diffusion in simulating recirculating flows. A numerical method for simulating shallow recirculating flows over a variable topography on unstructured grids is presented. This mass conservative approach can simulate different flow... 

    Energy evaluation of mono-energetic electron beam produced by ellipsoid cavity model in the bubble regime

    , Article Contributions to Plasma Physics ; Volume 49, Issue 1-2 , 2009 , Pages 49-54 ; 08631042 (ISSN) Sadighi Bonabi, R ; Rahmatallahpor, S ; Navid, H ; Lotfi, E ; Zobdeh, P ; Reiazie, Z ; Bostandoust, M ; Mohamadian, M ; Sharif University of Technology
    2009
    Abstract
    The electron acceleration in the bubble regime is considered during the laser-plasma interaction. The PIC and experimental results show that the obtained ellipsoid cavity model is more consistent than the spherical model. We prove the fields inside the cavity depend linearly on the coordinates and the spherical cavity is a special case of the ellipsoid model. The quasi mono-energetic electrons output beam tracing the laser plasma can be more appropriately described with this model. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim  

    A geomechanical approach to casing collapse prediction in oil and gas wells aided by machine learning

    , Article Journal of Petroleum Science and Engineering ; Volume 196 , 2021 ; 09204105 (ISSN) Mohamadian, N ; Ghorbani, H ; Wood, D. A ; Mehrad, M ; Davoodi, S ; Rashidi, S ; Soleimanian, A ; Shahvand, A. K ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The casing-collapse hazard is one that drilling engineers seek to mitigate with careful well design and operating procedures. However, certain rock formations and their fluid pressure and stress conditions are more prone to casing-collapse risks than others. The Gachsaran Formation in south west Iran, is one such formation, central to oil and gas resource exploration and development in the Zagros region and consisting of complex alternations of anhydrite, marl and salt. The casing-collapse incidents in this formation have resulted over decades in substantial lost production and remedial costs to mitigate the issues surrounding wells with failed casing string. High and vertically-varying... 

    Recent activities in science and technology and the progress of women in physics in the last three years in Iran

    , Article AIP Conference Proceedings, Stellenbosch ; Volume 1517 , 2013 , Pages 108-109 ; 0094243X (ISSN); 9780735411388 (ISBN) Izadi, D ; Azad, M. T ; Mahmoudi, N ; Izadipanah, N ; Eshghi, N ; Sharif University of Technology
    2013
    Abstract
    For the 4th IUPAP International Conference of Women in Physics, we report on activities in science and engineering in Iran, and conditions for women in physics, in the three years since the 3rd IUPAP International Conference of Women in Physics was held in 2008. Iran has made prominent advancements and astonishing progress in laser technology, biotechnology, nanotechnology, genetics, computer software and hardware, and robotics. Iranian scientists have been very productive in several experimental fields, such as pharmaceutical, organic, and polymer chemistry. Conditions for women in physics have improved greatly in recent years. A project to improve the environment for learning physics, and... 

    Lead-free MAGeI3 as a suitable alternative for MAPbI3 in nanostructured perovskite solar cells: a simulation study

    , Article Environmental Science and Pollution Research ; Volume 30, Issue 19 , 2023 , Pages 57032-57040 ; 09441344 (ISSN) Mehrabian, M ; Akhavan, O ; Rabiee, N ; Afshar, E. N ; Zare, E. N ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2023
    Abstract
    The lead is a heavy metal with hazardous impacts on environment and human life. Lead-free perovskite solar cells have attracted much attention in recent years, due to eco-friendly characteristics. Meanwhile, Pb-containing cells showed the highest efficiencies among the various types of cells. Hence, designing novel Pb-free solar cells with comparable or better performance than the Pb-containing ones is highly required. In this work, a lead-free methyl-ammonium-germanium-iodide (MAGeI3)-based perovskite solar cell with ITO/TiO2/MAGeI3/Spiro-OMeTAD/Ag multilayer nanostructure has been proposed and its main characteristics including open-circuit voltage (VOC) and power conversion efficiency (η)... 

    Ab initio study of electronic effects in the ZnO/TiO2 core/shell interface: Application in dye sensitized solar cells

    , Article RSC Advances ; Vol. 4, issue. 1 , April , 2014 , p. 301-307 Pazoki, M ; Nafari, N ; Taghavinia, N ; Sharif University of Technology
    2014
    Abstract
    Core/shell structure of ZnO nanowires coated with a monolayer of TiO 2 is investigated using Density Functional Theory (DFT). The electronic states of the semiconductor is calculated and compared before and after coating of the TiO2 monolayer on a ZnO [101 0] surface. The effect of TiO2 coating induce surface states changes and shifts the conduction and valence band edges to higher energies. Our results, in qualitative agreement with the experimental work of Matt Law et al. (J. Phys. Chem. B, 110, 22652), show an increase in open circuit voltage and a decrease in short circuit current in ZnO/TiO2 core shell dye sensitized solar cells. Regarding the semiconductor density of states (DOS), TiO2... 

    Analyzing factors effective on the development of relationship commitment

    , Article Proceedings of the 2012 International Conference on Artificial Intelligence, ICAI 2012, 16 July 2012 through 19 July 2012 ; Volume 1 , July , 2012 , Pages 398-404 ; 1601322186 (ISBN) ; 9781601322180 (ISBN) Dehdashti, Y ; Lotfi, N ; Karami, N ; Sharif University of Technology
    2012
    Abstract
    Due to the important role of commitment and trust in the relationship marketing, the factors which can directly result in a committed relationship along with the factors which can influence the commitment through influencing trust, according to the model of commitment and trust by (Morgan & Hunt, 1994) have been introduced and their level of importance has been investigated here. The article uses fuzzy cognitive maps (FCMs) in the proposed model to find the most important paths leading to relationship commitment. The FCM analyzes the responses of a group of 30 people including general practitioners in dentistry, managers of dental departments in some of the public clinics and hospitals who... 

    Morphological dependence of light backscattering from metallic back reflector films: Application in dye-sensitized solar cells

    , Article Physica Status Solidi (A) Applications and Materials Science ; Volume 212, Issue 4 , January , 2015 , Pages 785-790 ; 18626300 (ISSN) Sharifi, N ; Ghazyani, N ; Taghavinia, N ; Sharif University of Technology
    Wiley-VCH Verlag  2015
    Abstract
    Conventionally, a film of TiO2 particles of 300 nm size is employed in Dye-sensitized solar cells (DSCs) as the back reflector film to enhance the light harvesting. Perfect reflectance of silver in visible and near infrared motivates to investigate its potential as the material for the light back reflector film in DSCs. In this study, light back reflector films consisting of 300 nm-sized silver particles, as well as vacuum evaporated silver flat film, were fabricated and compared to 300 nm-sized rutile-type TiO2 particulate reflector film to study their optical aspects. Conventional TiO2 rutile-type particulate film demonstrates slightly lower performance... 

    Monolithic dye sensitized solar cell with metal foil counter electrode

    , Article Organic Electronics ; Volume 57 , June , 2018 , Pages 194-200 ; 15661199 (ISSN) Behrouznejad, F ; Taghavinia, N ; Ghazyani, N ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Monolithic dye-sensitized solar cells are conventionally fabricated using carbon composite layer as the counter electrode. In the current research, the brittle carbon composite layer is replaced with a metal foil, aiming to decrease the device series resistance and using less catalyst material in counter electrode. This metallic structure has also an advantage of mechanical strength and decreases the fabrication complexity. The counter electrode is prepared by electrodepositing Cr film followed by electrodepositing Pt nanoparticles on a metal foil. As the porous spacer layer, different composite layers of SiO2, TiO2, and Al2O3 are investigated and the best results are obtained for TiO2... 

    A compact versatile microbial fuel cell from paper

    , Article ASME 2013 11th Int. Conf. on Fuel Cell Science, Eng. and Technology Collocated with the ASME 2013 Heat Transfer Summer Conf. and the ASME 2013 7th Int. Conf. on Energy Sustainability, FUELCELL 2013 ; 2013 ; 9780791855522 (ISBN) Wagner, L. T ; Hashemi, N ; Hashemi, N ; Sharif University of Technology
    2013
    Abstract
    Microbial fuel cells (MFCs) have been a potential green energy source for a long time but one of the problems is that either the technology must be used on a large scale or special equipment have been necessary to keep the fuel cells running such as syringe pumps. Paper-based microbial fuel cells do not need to have a syringe pump to run and can run entirely by themselves when placed in contact with the fluids that are necessary for it to run. Paper-based microbial fuel cells are also more compact than traditional MFCs since the device doesn't need any external equipment to run. The goal of this paper is to develop a microbial fuel cell that does not require a syringe pump to function. This... 

    Decentralized model predictive voltage control of islanded DC microgrids

    , Article 11th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2020, 4 February 2020 through 6 February 2020 ; 2020 Abbasi, M ; Mahdian Dehkordi, N ; Sadati, N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    This paper proposes a novel decentralized control approach for islanded direct-current (DC) microgrids (MGs) based on model predictive control (MPC) to regulate the distributed generation unit (DGU) output voltages, i.e. the voltages of the point of common coupling (PCC). A local controller is designed for each DGU, in the presence of uncertainties, disturbances, and unmodeled dynamics. First, a discrete-time state-space model of an MG is derived. Afterward, an MPC algorithm is designed to perform the PCC voltage control. The proposed MPC scheme ensures that the PCC voltages remain within an acceptable range. Several simulation studies have been conducted to illustrate the effectiveness of... 

    Intelligent optimal feed-back torque control of a 6DOF surgical rotary robot

    , Article 11th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2020, 4 February 2020 through 6 February 2020 ; 2020 Tajdari, F ; Ebrahimi Toulkani, N ; Zhilakzadeh, N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Sophisticated surgeons are widely indicating the use of surgical robots in order to reject human error, increase precision, and speed. Among well-known robotic mechanisms, parallel robots are broadly more investigated regarding their special characters as higher acceleration, speed, and accuracy, and less weight. Specific surgical procedures confine, and restrict their workspace, while controlling and validating the robots are complicated regarding to their complex dynamic. To this end, in this paper, a 6-DOF robot, with rotary manipulators, is designed and controlled. Addressing nonlinearity of parallel robots, an innovative methodology is formulated to robustly penalize the error of... 

    Semi-Real evaluation, and adaptive control of a 6DOF surgical robot

    , Article 11th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2020, 4 February 2020 through 6 February 2020 ; 2020 Tajdari, F ; Ebrahimi Toulkani, N ; Zhilakzadeh, N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Sophisticated surgeons are widely indicating the use of surgical robots in order to reject human error, increase precision, and speed. Among well-known robotic mechanisms, parallel robots are broadly more investigated regarding their special characters as higher acceleration, speed, and accuracy, and less weight. Specific surgical procedures confine and restrict their workspace, while controlling and validating the robots are complicated based on their complex dynamic. To this end, in this paper, a 6-DOF robot, with linear manipulators, is designed and controlled. Addressing the inherent nonlinearity of the robot mechanism, an adaptive PID manipulator is employed and validated with nonlinear...