Loading...
Search for:
mohammadi--ahmad
0.133 seconds
Total 1601 records
Effects of Sheet Metal Curvature and Number of Forming Stages in Strain Distribution on 3D Stamped Part with Inverse Finite Element Method
, M.Sc. Thesis Sharif University of Technology ; Assempour, Ahmad (Supervisor)
Abstract
The purpose of this work is to introduce an inverse finite element tool for prediction of the blank geometry and forming severity in stamping of 3D sheet metal parts. To achieve this goal total deformation theory of plasticity has been employed. In this method the final 3D part is unfolded on the flat surface in one step and on predefined surface in multistage analysis. The problem for one step analysis is reduced to two dimensional computations. The effect of curvature of initial blank and the number of stages in forming process are also considered. To investigate the capability of this work, predictions of the blank shape and strain distribution and forming severity have been performed on...
Electromagnetic Wave Propagation Analysis Using Level Set Method
, M.Sc. Thesis Sharif University of Technology ; Shishegar, Amir Ahmad (Supervisor)
Abstract
Always, there has been a great interest toward electromagnetic wave propagation and new ways for simulation of the problem. Level set methods provide a powerful mathematical framework for propagating surfaces (in 3-D) or curves (in 2-D). The contours of the moving objects are viewed as the zero level sets of a function and propagated in a Eulerian point of view by means of a Hamilton–Jacobi partial differential equation expressing the conservation of the level sets under a given velocity field. Level set methods have been applied in a wide range of domains, such as physics, chemistry, fluid dynamics, combustion, image processing… In this thesis, we introduce a new numerical procedure for...
Minimization of the Exit-Curvature Profile in Asymmetric Extrusion Dies
, M.Sc. Thesis Sharif University of Technology ; Assempour, Ahmad (Supervisor)
Abstract
One of the most common processes in shaping profiles with various cross-sections (with parallel surfaces), is a direct extrusion process. Always in the process, minimize the extrusion pressure and reduce the output profile curvature form of the main goals of researchers. Minimize the extrusion pressure in the mold design using nonlinear, many relationships are presented. Also, to reduce the output profile curvature of the mold, extrusion molding is used mostly at the outlet of the bearing. The purpose of this research is suitable for bearing design eliminates the curvature of the final product is extrusion. In this study interior design templates and profiles bearing acts simultaneously on...
Design and Fabrication of Nerve Guidance Conduit for Perioheral Nerve Regeneration based on Gelatin/Graphene
, M.Sc. Thesis Sharif University of Technology ; Ramazani Saadatabadi, Ahmad (Supervisor) ; Mashayekhan, Shohreh (Co-Advisor)
Abstract
The the nervous system as a most comlicated body system , plays an important and vital role for the body systems. damage to the peripheral nervous system result in nervous system disorders which claissified to Neuropraxia, Axonotmesis and Neurotmesis based on damage itensity. tissue engineering considered as one of the repairing nervous damage way, which by creating 3D substrat (scaffold) with proper physical structure, increses possibility of adhesion, growth and proliferation of cells to increase regeneration rate of damaged nerve. in this study, a combination of dual-electrospinning and rolling the spun film used to preparate a nerve guidance conduit (NGC) based on gelatin, PCL and...
Water Market Modeling in Response to Water Resources Allocation Challenges in Orumieh River Basin
, M.Sc. Thesis Sharif University of Technology ; Abrishamchi, Ahmad (Supervisor) ; Arhami, Mohammad (Supervisor)
Abstract
In recent years, water issues have been the focus of increasing international concern and debate. Agriculture is not only the world's largest water user in terms of volume, it is also a relatively low-value, low-efficiency water user. These facts are forcing governments and donors to rethink the economic, social and environmental implications of irrigation projects. Population growth, increase in water demand, the extended drought and utilization of too much water for agricultural, have been made water conflicts over water resources. Due to the drought has a significant economic and social impact on the irrigated agricultural sector, Water markets based on transferable water rights developed...
Fabrication and Characterization of Modified Polyether Ether Ketone/Carbon Nanofiber Nanocomposite for Bone Application
, M.Sc. Thesis Sharif University of Technology ; Ramazani Saadatabadi, Ahmad (Supervisor)
Abstract
The use of polyether ether ketone (PEEK) in bone implants is limited due to a lack of cell adhesion and proliferation. Therefore, in this study, we modified the surface of PEEK with a nanocomposite coating containing piezoelectric and bioactive properties. Sulfonated PEEK with suitable mechanical and hydrophilic properties along with polyvinylidene fluoride was used as a biocompatible polymer with piezoelectric properties for coating. Also, nanohydroxyapatite was used as a bioactive material, and carbon nanofibers with significant mechanical and electrical properties were used in the nanocomposite. The surface was sulfonated as an intermediate layer to improve the connection between the...
Fabrication and In-Vitro Evaluation of Anti-Cancer Hydrogel Containing Combination of Magnesium Oxide Nanoparticle Anticancer Drug for use in Breast Cancer Treatments
, M.Sc. Thesis Sharif University of Technology ; Ramazani Saadatabadi, Ahmad (Supervisor) ; Varshosaz, Jaleh (Supervisor)
Abstract
Fabrication and In-Vitro Evaluation of Anti-Cancer Hydrogel Containing Combination of Magnesium Oxide Nanoparticle Anticancer Drug for use in Breast Cancer Treatments
Effect of tiO_2 Nanoparticles on Heat and Drag Properties of Dilute Polymer Solutions
, M.Sc. Thesis Sharif University of Technology ; Ramezani Saadat Abadi, Ahmad (Supervisor) ; Mohammadi, Mohammad Reza ($item.subfieldsMap.e)
Abstract
In the present work, the experiments were carried out for two types of PAM (3330 and 3630) with three distinct concentrations (25, 40 and 55 ppm) and TiO_2-water nanofluid for four concentrations (1.5, 2, 2.5 and 3 vol. %), and the Nusselt number and friction factor for each of them expressed separately. The Reynolds number was in the range from 11000 to 21000. The steady state turbulent convective heat transfer and friction factor of the combination of TiO_2-water nanofluid and polymer 3330 in the coiled tube were investigated. The effects of the Reynolds number for 2 vol. % nanoparticles which consists of 25 ppm PAM (3330) determined at the constant temperature of 24°C. It was observed...
Preparation of Biodegradeble Nanocomposite with Appropriate Physical and Mechanical Properties for Bread Packaging
, M.Sc. Thesis Sharif University of Technology ; Ramezani Saadat, Ahmad (Supervisor) ; Mohammadi, Mohammad Reza (Supervisor)
Abstract
Platelet nanoparticles could dramatically decrease permeability of polymeric film where increase considerably its physical -mechanical properties. Bio based (Biodegradable) polymeric materials such as starch based polymeric films show very weak mechanical and high oxygen and water vapor permeability. Graphene oxide (GO) could increase mechanical properties of starch based polymer where decrease its permeability dramatically. Addition of chitosan also could increase antibacterial and antifungal of films and decrease permeability of films considerably. In this research nanocomposite of Starch/Chitosan/GO films have been prepared by solution method and its morphology, permeability, physical...
Investigation on Effects of Nanoparticles Presence on Hydrate Formation Characterization During Drilling
, M.Sc. Thesis Sharif University of Technology ; Mohammadi, Ali Asghar (Supervisor) ; Zarenezhad, Bahman (Co-Advisor) ; Ramazani, Ahmad (Co-Advisor)
Abstract
In past two decades, the direction of oil and gas exploration has moved towards deep water drilling. The pressure and temperature in these zones are ideal for gas hydrate formation that can cause serious and sometimes uncontrollable issues during drilling operations. Gas hydrate formation while drilling can cause problems such as occurrence of kick and blowout, plug chock and kill line, and change in rheology of drilling mud. On the other hand, nowadays, nanotechnology has created an evolution in engineering sciences and because of the wide range of this science, drilling industry is affected like other industries. In the meantime, because of high yield, high stability and various methods of...
Manufacture of Smart Drug Delivery System with UCST Polymers
, M.Sc. Thesis Sharif University of Technology ; Ramazani, Ahmad (Supervisor)
Abstract
Smart heat-sensitive polymers play a unique role in drug delivery systems due to reversible behavior in response to environmental changes, especially temperature changes. Among the heat-sensitive polymers, UCST polymers due to their specific behavior and very little-known polymers with this feature are the subject of many new researches. In the present study, New designed temperature-sensitive polymers with UCST capability based on acrylamide and vinyl acetate were synthesized. These copolymers were synthesized in different percentages of acrylamide by free radical polymerization in solution conditions. All polymers compounds were characterized by H-NMR, FT-IR, DSC and GPC measurements. The...
Numerical study of lorentz force interaction with micro structure in channel flow
, Article Energies ; Volume 14, Issue 14 , 2021 ; 19961073 (ISSN) ; Ali, K ; Ahmad, S ; Cai, J ; Sharif University of Technology
MDPI AG
2021
Abstract
The heat transfer Magnetohydrodynamics flows have been potentially used to enhance the thermal characteristics of several systems such as heat exchangers, electromagnetic casting, adjusting blood flow, X-rays, magnetic drug treatment, cooling of nuclear reactors, and magnetic devices for cell separation. Our concern in this article is to numerically investigate the flow of an incompressible Magnetohydrodynamics micropolar fluid with heat transportation through a channel having porous walls. By employing the suitable dimensionless coordinates, the flow model equations are converted into a nonlinear system of dimensionless ordinary differential equations, which are then numerically treated for...
3D distributed modeling of trolling-mode AFM during 2D manipulation of a spherical cell
, Article Journal of Nanoparticle Research ; Volume 23, Issue 4 , 2021 ; 13880764 (ISSN) ; Nejat Pishkenari, H ; Mohammadi Moghaddam, M ; Sharif University of Technology
Springer Science and Business Media B.V
2021
Abstract
In this study, a general 3D distributed modeling of Trolling-Mode AFM (TR-AFM) as a nanorobot is presented to analyze the 2D manipulation process of a spherical cell. To this aim, the analysis is categorized into 3 sections. In the first section, 6 deformations of TR-AFM are taken into account, and the standard model of the system is obtained. Moreover, the system is simulated in ANSYS Workbench. The results of modal and transient analyses of the system from both analytical and software methods reveal high agreement, which confirms the accuracy of the presented analytical model. In the second section, by utilizing the 3D derived model, displacement of a spherical yeast single cell (W303)...
Sol-gel nanostructured titanium dioxide: Controlling the crystal structure, crystallite size, phase transformation, packing and ordering
, Article Microporous and Mesoporous Materials ; Volume 112, Issue 1-3 , 2008 , Pages 392-402 ; 13871811 (ISSN) ; Fray, D. J ; Mohammadi, A ; Sharif University of Technology
2008
Abstract
The anatase phase of titania was stabilised with physically modifying particulate sol-gel process. Two major parameters, peptisation temperature and drying temperature, were identified which were responsible for retarding the anatase to rutile phase transformation, crystal growth and packing of primary particles. The critical nucleus size of transformation was controlled by natural (at 25 °C) and artificial (at 50 and 70 °C) peptisation techniques. Moreover, sintering of primary particles was controlled by cool (at 0 and 5 °C) and normal (at 25 °C) drying techniques. Fourier transform infrared spectroscopy (FT-IR) analysis confirmed that a full conversion of titanium isopropoxide is obtained...
A numerical approach for analyzing the electromagnetohydrodynamic flow through a rotating microchannel
, Article Arabian Journal for Science and Engineering ; Volume 48, Issue 3 , 2023 , Pages 3765-3781 ; 2193567X (ISSN) ; Ahmad, A ; Ahmad, S ; Ahmad, S ; Jamshed, W ; Sharif University of Technology
Institute for Ionics
2023
Abstract
The purpose of the paper is to develop a mathematical foundation for exploring the complex interaction of Coriolis and Lorentz forces with the electromagnetohydrodynamic (EMHD) flow of a power-law fluid inside a microchannel with wall slip condition. Both the Lorentz and Coriolis forces act orthogonally to each other. Mathematical modeling of the problem is based on a set of classical Maxwell and Navier–Stokes equations, which are subsequently solved numerically by employing an implicit finite difference methodology. The numerical solution thus obtained has been found to be in an excellent agreement correlation with the ones reported in the scientific literature, for some limiting cases. A...
Electrokinetic mixing and displacement of charged droplets in hydrogels
, Article Transport in Porous Media ; Vol. 104, Issue. 3 , Jun , 2014 , pp. 469-499 ; ISSN: 01693913 ; Sharif University of Technology
2014
Abstract
Mixing in droplets is an essential task in a variety of microfluidic systems. Inspired by electrokinetic mixing, electric field-induced hydrodynamic flow inside a charged droplet embedded in an unbounded polyelectrolyte hydrogel is investigated theoretically. In this study, the polyelectrolyte hydrogel is modeled as a soft, and electrically charged porous solid saturated with a salted Newtonian fluid, and the droplet is considered an incompressible Newtonian fluid. The droplet-hydrogel interface is modeled as a surface, which is located at the plane of shear, with the electrostatic potential ζ. The fluid inside the droplet attains a finite velocity owing to hydrodynamic coupling with the...
Electric-field-induced response of a droplet embedded in a polyelectrolyte gel
, Article Physics of Fluids ; Volume 25, Issue 8 , 2013 ; 10706631 (ISSN) ; Sharif University of Technology
2013
Abstract
The electric-field induced response of a droplet embedded in a quenched polyelectrolyte gel is calculated theoretically. The response comprises the droplet translation and the electric-field induced flow fields within the droplet. The gel is modeled as a soft, and electrically charged porous solid saturated with a salted Newtonian fluid. The droplet is considered an incompressible Newtonian fluid with no free charge. An analytical solution, using the perturbation methodology and linear superposition, is obtained for the leading-order steady response to a DC electric-field. The fluid within the droplet is driven due to hydrodynamic coupling with the electroosmotic flow. The fluid velocity...
Oscillatory response of charged droplets in hydrogels
, Article Journal of Non-Newtonian Fluid Mechanics ; Volume 234 , 2016 , Pages 215-235 ; 03770257 (ISSN) ; Sharif University of Technology
Elsevier
2016
Abstract
Characterization of droplet-hydrogel interfaces is of crucial importance to engineer droplet-hydrogel composites for a variety of applications. In order to develop electrokinetic diagnostic tools for probing droplet-hydrogel interfaces, the displacement of a charged droplet embedded in a polyelectrolyte hydrogel exposed to an oscillating electric field is determined theoretically. The polyelectrolyte hydrogel is modeled as an incompressible, charged, porous, and elastic solid saturated with a salted Newtonian fluid. The droplet is considered an incompressible Newtonian fluid with no charges within the droplet. The droplet-hydrogel interface is modeled as a surface with the thickness of zero...
Transport in droplet-hydrogel composites: response to external stimuli
, Article Colloid and Polymer Science ; Volume 293, Issue 3 , March , 2015 , Pages 941-962 ; 0303402X (ISSN) ; Sharif University of Technology
Springer Verlag
2015
Abstract
Determination of effective transport properties of droplet-hydrogel composites is essential for various applications. The transport of ions through a droplet-hydrogel composite subjected to an electric field is theoretically studied as an initial step toward quantifying the effective transport properties of droplet-hydrogel composites. A three-phase electrokinetic model is used to derive the microscale characteristics of the polyelectrolyte hydrogel, and the droplet is considered an incompressible Newtonian fluid. The droplet-hydrogel interface is modeled as a surface, which encloses the interior fluid. The surface has the thickness of zero and the electrostatic potential ζ. Standard...
A simple particulate sol-gel route to synthesize nanostructural TiO2-Ta2O5 binary oxides and their characteristics
, Article Materials Science and Engineering B: Solid-State Materials for Advanced Technology ; Volume 142, Issue 1 , 2007 , Pages 16-27 ; 09215107 (ISSN) ; Fray, D. J ; Sadrnezhaad, S. K ; Mohammadi, A ; Sharif University of Technology
2007
Abstract
Nanostructured and mesoporous TiO2-Ta2O5 films and powders with various TiO2:Ta2O5 molar ratios and high specific surface area (SSA) have been prepared by a straightforward particulate sol-gel route. Titanium isopropoxide and tantalum ethoxide were used as precursors and hydroxypropyl cellulose (HPC) was used as a polymeric fugitive agent (PFA) in order to increase the SSA. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that powders contained both hexagonal δ-Ta2O5 and monoclinic β-Ta2O5 phases, as well as anatase and rutile. It was observed that Ta2O5 retarded anatase-to-rutile transformation. Furthermore, δ → β phase transformation temperature increased...