Loading...
Search for:
mohammadi--somayeh
0.122 seconds
Total 956 records
Feasibility Analysis of Backflow Detection in Lobe Blowers in Khuzestan Steel Plant using Condition Monitoring Techniques
, M.Sc. Thesis Sharif University of Technology ; Behzad, Mehdi (Supervisor) ; Mohammadi, Somayeh (Supervisor)
Abstract
Lobe blowers are positive displacement machines (PDM) that are widely used in various industries. The efficiency of lobe blowers depends on the clearance between fixed and moving parts. If the clearance between the parts increases, backflow occurs, which means that the flow returns from the high-pressure zone of the outlet to the low-pressure zone of the inlet, and this makes the blower not have the initial efficiency and work with a lower capacity than its design. This research is carried out with the aim of checking the feasibility of backflow detection using two condition monitoring methods, including ultrasonic and thermography techniques. The sample of this research includes seven...
Comparison of Vibration and Ultrasonic Signal Performance in Predicting the Remaining Useful Life of Rolling Element Bearings
, M.Sc. Thesis Sharif University of Technology ; Behzad, Mehdi (Supervisor) ; Mohammadi, Somayeh (Supervisor)
Abstract
The prediction of Remaining Useful Life (RUL) has become a critical tool in enhancing the availability of rotating machinery. By knowing the remaining time before a bearing failure occurs during operation, significant reductions in unplanned production downtimes and associated costs can be achieved. In this study, by analyzing the time signals of vibration and ultrasonic data related to the bearing of a 4.1 MW electromotor from installation to replacement, and by investigating the behavior trends and correlation between extracted features, RMS has been ultimately identified as the health indicator in both vibration and ultrasonic techniques for monitoring the bearing’s condition. First,...
, M.Sc. Thesis Sharif University of Technology ; Behzad, Mehdi (Supervisor) ; Mohammadi, Somayeh (Supervisor)
Abstract
Bearings play a critical role in the functionality of rotating equipment across various industries, accounting for approximately 50% of equipment failures due to bearing malfunctions. Accurate life prediction of bearings is essential not only for preventing unexpected breakdowns and subsequent damage but also for minimizing unnecessary replacements of functional bearings, which can lead to increased operational costs. With the rise of artificial intelligence, numerous predictive models have been developed; however, many of these require extensive datasets, which are often unavailable in industrial settings. Data collection is typically irregular, based on the sensitivity of the equipment,...
Identification of Possible Failures in Online Data of Gas Turbines based on Information Fusion using Artificial Intelligence
, M.Sc. Thesis Sharif University of Technology ; Behzad, Mehdi (Supervisor) ; Mohammadi, Somayeh (Supervisor)
Abstract
Gas turbines' safe operation depends on the monitoring of performance thresholds and equipment limitations. This is accomplished through online data monitoring using sensors, with the collected data processed by monitoring software supplied by turbine manufacturers to extract information on operating conditions. The thresholds are usually set during manufacturing under standard conditions and saved in the control software. As the turbine ages and undergoes maintenance, these thresholds and operating conditions may change, requiring expert analysis to determine safe operating limits. Technological advancements have enabled the processing of operational data to establish patterns and create...
Reliability and Redundancy Analysis at a Methanol Plant in the Khark Petrochemical Complex: Investigation, Modeling, and Improvement
, M.Sc. Thesis Sharif University of Technology ; Mohammadi, Somayeh (Supervisor) ; Saniee Monfared, Mohammad Ali (Supervisor)
Abstract
Today, reliability assessment of production systems is crucial for ensuring continuous production and minimizing operational and maintenance (O&M) costs. One way to assess reliability at the system level is to create a reliability block diagram (RBD) and estimate the failure rates of equipment over their operational periods. This approach has been utilized in this thesis, focusing on assessment of the reliability of various units within the methanol plant at Khark Petrochemical Complex. In this context, understanding the condition of the equipment criticality is essential for constructing the reliability block diagram. The Crespo model and total criticality per risk (CTR) measure have been...
The Investigation of the Effectiveness of Engine Oil Filter Particle Analysis in Enhancing the Efficiency of Diesel Engine Condition Monitoring Programs
, M.Sc. Thesis Sharif University of Technology ; Behzad, Mehdi (Supervisor) ; Masoodi, Alireza (Supervisor) ; Mohammadi, Somayeh (Co-Supervisor)
Abstract
Over the years, as machines have been invented, their maintenance and repair have consistently been regarded as critical concerns. Oil analysis techniques are an effective method for monitoring the condition of mechanical equipment. Since filters in these devices continually absorb and remove a significant portion of particles from the lubricant, the selection of appropriate filters is crucial. While filters positively affect machine performance, they can also negatively impact oil condition monitoring. To mitigate this negative effect and improve the predictive accuracy of equipment health monitoring, oil filter analysis was conducted. In this research, analytical ferrography tests were...
All-Optical Scalable Multi-stage Interconnection Network for Data Centers
, M.Sc. Thesis Sharif University of Technology ; Koohi, Somayeh (Supervisor)
Abstract
According to the increasing amount of data exchanged among data centers, the need for speeding up and bandwidth and reduced power consumption has been increased. The information show that about 77% of the data is moved into the data centers. On the other hand, 10% of data center’s power consumption is used to data transmission. Improving the interconnection network of data centers can play an important role in reducing power consumption and speeding up. In recent years, optical interconnects have gained attention as a promising solution. Nevertheless, offering an all-optical and efficient architecture is an important issue. In this study, we intend to provide a multi-stage, all-optical...
Adopting Dynamic Topology for Energy Management in Optical Interconnection Networks in Data Centers
, M.Sc. Thesis Sharif University of Technology ; Koohi, Somayeh (Supervisor)
Abstract
Today with the deployment of cloud computing and web applications; We need to have powerful datacenters with provisioning high bandwidth. Current data centers with electronic network interconnects, using excessive power to provisioning requisite bandwidth. Nevertheless, interconnecting networks in data centers isn’t in maximum efficiency and many components of them aren't used efficiently. So it is necessary to use an optical network with dynamic provisioning variable bandwidth and energy management. In this approach, our proposed architecture is designing topology with adopting dynamically for energy management in optical interconnect networks in data centers. To achieve this we can study...
3D distributed modeling of trolling-mode AFM during 2D manipulation of a spherical cell
, Article Journal of Nanoparticle Research ; Volume 23, Issue 4 , 2021 ; 13880764 (ISSN) ; Nejat Pishkenari, H ; Mohammadi Moghaddam, M ; Sharif University of Technology
Springer Science and Business Media B.V
2021
Abstract
In this study, a general 3D distributed modeling of Trolling-Mode AFM (TR-AFM) as a nanorobot is presented to analyze the 2D manipulation process of a spherical cell. To this aim, the analysis is categorized into 3 sections. In the first section, 6 deformations of TR-AFM are taken into account, and the standard model of the system is obtained. Moreover, the system is simulated in ANSYS Workbench. The results of modal and transient analyses of the system from both analytical and software methods reveal high agreement, which confirms the accuracy of the presented analytical model. In the second section, by utilizing the 3D derived model, displacement of a spherical yeast single cell (W303)...
Sol-gel nanostructured titanium dioxide: Controlling the crystal structure, crystallite size, phase transformation, packing and ordering
, Article Microporous and Mesoporous Materials ; Volume 112, Issue 1-3 , 2008 , Pages 392-402 ; 13871811 (ISSN) ; Fray, D. J ; Mohammadi, A ; Sharif University of Technology
2008
Abstract
The anatase phase of titania was stabilised with physically modifying particulate sol-gel process. Two major parameters, peptisation temperature and drying temperature, were identified which were responsible for retarding the anatase to rutile phase transformation, crystal growth and packing of primary particles. The critical nucleus size of transformation was controlled by natural (at 25 °C) and artificial (at 50 and 70 °C) peptisation techniques. Moreover, sintering of primary particles was controlled by cool (at 0 and 5 °C) and normal (at 25 °C) drying techniques. Fourier transform infrared spectroscopy (FT-IR) analysis confirmed that a full conversion of titanium isopropoxide is obtained...
Electrokinetic mixing and displacement of charged droplets in hydrogels
, Article Transport in Porous Media ; Vol. 104, Issue. 3 , Jun , 2014 , pp. 469-499 ; ISSN: 01693913 ; Sharif University of Technology
2014
Abstract
Mixing in droplets is an essential task in a variety of microfluidic systems. Inspired by electrokinetic mixing, electric field-induced hydrodynamic flow inside a charged droplet embedded in an unbounded polyelectrolyte hydrogel is investigated theoretically. In this study, the polyelectrolyte hydrogel is modeled as a soft, and electrically charged porous solid saturated with a salted Newtonian fluid, and the droplet is considered an incompressible Newtonian fluid. The droplet-hydrogel interface is modeled as a surface, which is located at the plane of shear, with the electrostatic potential ζ. The fluid inside the droplet attains a finite velocity owing to hydrodynamic coupling with the...
Electric-field-induced response of a droplet embedded in a polyelectrolyte gel
, Article Physics of Fluids ; Volume 25, Issue 8 , 2013 ; 10706631 (ISSN) ; Sharif University of Technology
2013
Abstract
The electric-field induced response of a droplet embedded in a quenched polyelectrolyte gel is calculated theoretically. The response comprises the droplet translation and the electric-field induced flow fields within the droplet. The gel is modeled as a soft, and electrically charged porous solid saturated with a salted Newtonian fluid. The droplet is considered an incompressible Newtonian fluid with no free charge. An analytical solution, using the perturbation methodology and linear superposition, is obtained for the leading-order steady response to a DC electric-field. The fluid within the droplet is driven due to hydrodynamic coupling with the electroosmotic flow. The fluid velocity...
Oscillatory response of charged droplets in hydrogels
, Article Journal of Non-Newtonian Fluid Mechanics ; Volume 234 , 2016 , Pages 215-235 ; 03770257 (ISSN) ; Sharif University of Technology
Elsevier
2016
Abstract
Characterization of droplet-hydrogel interfaces is of crucial importance to engineer droplet-hydrogel composites for a variety of applications. In order to develop electrokinetic diagnostic tools for probing droplet-hydrogel interfaces, the displacement of a charged droplet embedded in a polyelectrolyte hydrogel exposed to an oscillating electric field is determined theoretically. The polyelectrolyte hydrogel is modeled as an incompressible, charged, porous, and elastic solid saturated with a salted Newtonian fluid. The droplet is considered an incompressible Newtonian fluid with no charges within the droplet. The droplet-hydrogel interface is modeled as a surface with the thickness of zero...
Transport in droplet-hydrogel composites: response to external stimuli
, Article Colloid and Polymer Science ; Volume 293, Issue 3 , March , 2015 , Pages 941-962 ; 0303402X (ISSN) ; Sharif University of Technology
Springer Verlag
2015
Abstract
Determination of effective transport properties of droplet-hydrogel composites is essential for various applications. The transport of ions through a droplet-hydrogel composite subjected to an electric field is theoretically studied as an initial step toward quantifying the effective transport properties of droplet-hydrogel composites. A three-phase electrokinetic model is used to derive the microscale characteristics of the polyelectrolyte hydrogel, and the droplet is considered an incompressible Newtonian fluid. The droplet-hydrogel interface is modeled as a surface, which encloses the interior fluid. The surface has the thickness of zero and the electrostatic potential ζ. Standard...
A simple particulate sol-gel route to synthesize nanostructural TiO2-Ta2O5 binary oxides and their characteristics
, Article Materials Science and Engineering B: Solid-State Materials for Advanced Technology ; Volume 142, Issue 1 , 2007 , Pages 16-27 ; 09215107 (ISSN) ; Fray, D. J ; Sadrnezhaad, S. K ; Mohammadi, A ; Sharif University of Technology
2007
Abstract
Nanostructured and mesoporous TiO2-Ta2O5 films and powders with various TiO2:Ta2O5 molar ratios and high specific surface area (SSA) have been prepared by a straightforward particulate sol-gel route. Titanium isopropoxide and tantalum ethoxide were used as precursors and hydroxypropyl cellulose (HPC) was used as a polymeric fugitive agent (PFA) in order to increase the SSA. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that powders contained both hexagonal δ-Ta2O5 and monoclinic β-Ta2O5 phases, as well as anatase and rutile. It was observed that Ta2O5 retarded anatase-to-rutile transformation. Furthermore, δ → β phase transformation temperature increased...
Correction to: Controlled manipulation of a bio-particle using trolling mode atomic force microscope: a simulation study (Journal of Nanoparticle Research, (2021), 23, 10, (221), 10.1007/s11051-021-05301-6)
, Article Journal of Nanoparticle Research ; Volume 24, Issue 8 , 2022 ; 13880764 (ISSN) ; Nejat Pishkenari, H ; Mohammadi Moghaddam, M ; Sajjadi, M ; Sharif University of Technology
Springer Science and Business Media B.V
2022
Abstract
The original article contained a mistake in Equation 1. The corrected Equation 1 is shown below: MX+Cx+Kx=f.The original article has been updated © Springer Nature B.V. 2022
Experimental investigation of thermal resistance of a ferrofluidic closed-loop pulsating heat pipe
, Article Heat Transfer Engineering ; Vol. 35, issue. 1 , 2014 , pp. 25-33 ; ISSN: 01457632 ; Mohammadi, M ; Ghahremani, A. R ; Shafii, M. B ; Mohammadi, N ; Sharif University of Technology
2014
Abstract
For the present article, a pulsating heat pipe (PHP) is fabricated and tested experimentally by bending a copper tube. The effects of working fluid, heat input, charging ratio, inclination angle, magnets location, and ferrofluid (magnetic nanofluid) volumetric concentration have been investigated on the thermal performance of this PHP. Experimental results show that using ferrofluid as a working fluid improves the thermal performance of the PHP significantly. Moreover, applying a magnetic field on a ferrofluidic PHP reduces its thermal resistance. By changing the inclination angle of the PHP from vertical mode to angles close to the horizontal mode, the present PHP has a constant and...
Hybrid control of electrohydrodynamic 3D printer cone jet
, Article Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering ; Volume 237, Issue 4 , 2023 , Pages 1262-1272 ; 09544089 (ISSN) ; Abdullahi, M. A ; Salarieh, H ; Movahhedy, M. R ; Mohammadi, S ; Sharif University of Technology
SAGE Publications Ltd
2023
Abstract
In this article, the control of an electrohydrodynamic 3D printer is studied. The proposed controller has a hybrid piecewise linear feedback form which is designed based on a hybrid model of the printer. The hybrid model is obtained via a gray box identification process whose structure is proposed utilizing the results of the finite element simulation of the printer within the COMSOL Multiphysics software. The asymptotic stability of the hybrid control combined with a hybrid observer is proven using the Lyapunov theory. In addition, the obtained control is applied to the finite element model of the printer to check its performance which shows the success of the controlled system in tracking...
Bromo-lithium Exchange Reaction in Organic Synthesis and Continuous Separation of Organic and Aqueous phase Reactions by Microfloid Technique
, M.Sc. Thesis Sharif University of Technology ; Mohammadi, Ali Asghar (Supervisor) ; Bastani, Dariush (Supervisor)
Abstract
Today, with the development of micro-technology in chemical reactions, the use of appropriate systems for the separation and purification of synthesized chemicals seems to be necessary. In this study, the continuous synthesis of bromide-lithium exchange reaction and the separation of organic and aqueous phase products in micro systems was investigated.The method used to construct micro-separator and micro reactor, a laser engraving technique, and thermal bonding of glass to glass.In the first step, the factors affecting the separation of organic and aqueous phase in the capillary micro-separator, such as the width of the capillary, the length of the capillary, the number of capillaries and...
Semiconductor TiO2-Al2O3 thin film gas sensors derived from aqueous particulate sol-gel process
, Article Materials Science in Semiconductor Processing ; Vol. 27, issue , 2014 , p. 711-718 ; Sharif University of Technology
2014
Abstract
Nanostructured TiO2-Al2O3 films and powders were prepared by a straightforward aqueous particulate sol-gel route. Titanium (IV) isopropoxide and aluminum chloride were used as precursors, and hydroxypropyl cellulose was used as a polymeric fugitive agent in order to increase the porosity. The effect of Al:Ti molar ratio was studied on the crystallization behavior of the products. X-ray diffraction (XRD) revealed that the powders crystallized at 800°C, containing anatase-TiO2, rutile-TiO2 and cubic-Al2O3 phases. Furthermore, it was found that Al2O3 retarded the anatase to rutile transformation. Transmission electron microscope (TEM) image showed that one of the smallest crystallite sizes was...