Loading...
Search for:
mohammadi--zohreh
0.128 seconds
Total 944 records
Hydrazine-modified starch coated magnetic nanoparticles as an effective pH-responsive nanocarrier for doxorubicin delivery
, Article Journal of Industrial and Engineering Chemistry ; Volume 39 , 2016 , Pages 203-209 ; 1226086X (ISSN) ; Hosseini, S. H ; Pourjavadi, A ; Sharif University of Technology
Korean Society of Industrial Engineering Chemistry
2016
Abstract
A novel, magnetic nanocarrier was successfully synthesized through a facile and economical producer in which Fe3O4 magnetic nanoparticles were coated by starch-g-poly (methyl methacrylate-co-PEG-acrylamide). The surface of nanocarrier was then modified by hydrazine to preparation of a pH-responsive carrier. The resulted nanocarrier was applied for delivery of doxorubicin (DOX) as an effective anti-cancer drug. DOX was reacted with hydrazine linkage on the surface of nanocarrier to form hydrazone bond. Due to the presence of numerous hydrazine groups on the surface of magnetic nanocarrier large amounts of DOX was loaded onto the carrier (327 mg g−1). © 2016 The Korean Society of Industrial...
Synthesis & Properties of Nd-doped Glass-ceramics in the SiO2-CaO-MgO System from Sol-gel Method Used as Solid Lasers
,
M.Sc. Thesis
Sharif University of Technology
;
Hamnabard, Zohreh
(Supervisor)
;
Nemati, Ali
(Supervisor)
Abstract
In this study, SiO2-CaO-MgO galsses and glass-ceramic powder doped with Nd3+ were synthesized with sol-gel method. Tetraethylorthosilicate (TEOS), Ca(NO3)2.4H2O, Mg(NO3)2.6H2O, Nd(NO3)3.6H2O, ethanol, distilled water, and HNO3 were used as starting materials. The synthesized powder’s properties were examined with STA, XRD, DRS, PL, FTIR and SEM analysis. From XRD patterns of glass samples, the role of dopant was introduced as intermediate oxide in glass matrix. The XRD patterns of glass-ceramic samples indicated that the bredigite and akermanite crystals were formed in glass matrix. The band gap energy of samples were calculated from DRS analysis and were seen with increasing the dopant...
Cross-linked poly (dimethylaminoethyl acrylamide) coated magnetic nanoparticles: a high loaded, retrievable, and stable basic catalyst for the synthesis of benzopyranes in water
, Article RSC Advances ; Vol. 4, issue. 91 , 2014 , p. 50047-50055 ; Hosseini, S. H ; Pourjavadi, A ; Bennett, C ; Sharif University of Technology
2014
Abstract
A novel heterogeneous catalyst has been synthesized based on the distillation-precipitation-polymerization of methyl acrylate onto modified magnetic nanoparticles followed by the amidation of the methyl ester groups using N,N-dimethylethylenediamine. The resulting poly(dimethylaminoethyl acrylamide) coated magnetic nanoparticles (MNP@PDMA) catalyst was characterized using an array of sophisticated analytical techniques, including FT-IR, TGA, SEM, TEM, CHN, vibrating sample magnetometer (VSM), and XRD analysis. The resulting heterogeneous base catalyst allowed the performance of a domino Knoevenagel condensation/Michael addition/cycloaddition reaction toward the synthesis of...
Magnetic nanoparticles entrapped in the cross-linked poly(imidazole/imidazolium) immobilized Cu(ii): An effective heterogeneous copper catalyst
, Article RSC Advances ; Volume 4, Issue 87 , 2014 , Pages 46418-46426 ; ISSN: 20462069 ; Hosseini, S. H ; Zohreh, N ; Bennett, C ; Sharif University of Technology
2014
Abstract
Anchoring of copper sulfate in layered poly(imidazole-imidazolium) coated magnetic nanoparticles provided a highly stable, active, reusable, high loading, and green catalyst for the click synthesis of 1,2,3-triazoles via a one-pot cycloaddition of alkyl halide, azide, and alkyne (Cu-A3C). The catalyst was characterized by FTIR, TGA, TEM, SEM, XRD, EDAX, VSM and AAS. High selectivity, broad diversity of alkyl/benzyl bromide/chloride and alkyl/aryl terminal alkynes, and good to excellent yields of products were obtained using 0.7 mol% catalyst. The catalyst was readily recovered and reused up to 6 times without significant loss of activity
Rating EFL Learner's Interlanguag Pragmatic Competence by Native and Non-native English Speaking Teachers
, M.Sc. Thesis Sharif University of Technology ; Alemi, Minoo (Supervisor) ; Eslami Rasekh, Zohreh (Co-Advisor)
Abstract
Pragmatic assessment and consistency in rating are among the subject matters which are still in need of more in-depth investigations. The significance of the issue is highlighted when remembering that inconsistency in ratings would surely damage the test fairness issue in assessment and lead to much diversity in ratings. The purpose of this study was investigating the criteria that native (American) and non-native (Iranian) English speaking teachers considered while rating the pragmatic productions of Iranian EFL learners regarding the two speech acts of compliment and compliment response. Overall, a hundred and twenty teachers (sixty native and sixty non-native raters) participated in this...
Immobilized copper(II) on nitrogen-rich polymer-entrapped Fe3O4 nanoparticles: A highly loaded and magnetically recoverable catalyst for aqueous click chemistry
, Article Applied Organometallic Chemistry ; Volume 30, Issue 2 , 2016 , Pages 73-80 ; 02682605 (ISSN) ; Hosseini, S. H ; Pour Javadi, A ; Bennett, C ; Sharif University of Technology
John Wiley and Sons Ltd
2016
Abstract
A heterogeneous magnetic copper catalyst was prepared via anchoring of copper sulfate onto multi-layered poly(2-dimethylaminoethyl acrylamide)-coated magnetic nanoparticles and was characterized using various techniques. The catalyst was found to be active, effective and selective for one-pot three-component reaction of alkyl halide, sodium azide and alkyne, known as copper-catalyzed click synthesis of 1,2,3-triazoles. As little as 0.3 mol% of catalyst was found to be effective under the optimum conditions. The catalyst could also be recycled and reused up to seven times without significant loss of activity. Thermal stability, high loading level of copper on catalyst, broad diversity of...
Covalent immobilization of cellulase using magnetic poly(ionic liquid) support: improvement of the enzyme activity and stability
, Article Journal of Agricultural and Food Chemistry ; Volume 66, Issue 4 , 2018 , Pages 789-798 ; 00218561 (ISSN) ; Hosseini, A ; Zohreh, N ; Yaghoubi, M ; Pourjavadi, A ; Sharif University of Technology
American Chemical Society
2018
Abstract
A magnetic nanocomposite was prepared by entrapment of Fe3O4 nanoparticles into the cross-linked ionic liquid/epoxy type polymer. The resulting support was used for covalent immobilization of cellulase through the reaction with epoxy groups. The ionic surface of the support improved the adsorption of enzyme, and a large amount of enzyme (106.1 mg/g) was loaded onto the support surface. The effect of the presence of ionic monomer and covalent binding of enzyme was also investigated. The structure of support was characterized by various instruments such as FT-IR, TGA, VSM, XRD, TEM, SEM, and DLS. The activity and stability of immobilized cellulase were investigated in the prepared support. The...
Immobilized tungstate on magnetic poly(2-ammonium ethyl acrylamide): A high loaded heterogeneous catalyst for selective oxidation of sulfides using H2O2
, Article Journal of Industrial and Engineering Chemistry ; Volume 44 , 2016 , Pages 73-81 ; 1226086X (ISSN) ; Hosseini, S. H ; Pourjavadi, A ; Soleyman, R ; Bennett, C ; Sharif University of Technology
Korean Society of Industrial Engineering Chemistry
2016
Abstract
A heterogeneous tungstate-based catalyst has been prepared for selective oxidation of sulfides to sulfoxides in the presence of 30% H2O2. The catalyst was prepared via immobilization of high amounts of WO4 2− onto the cross-linked poly(ammonium ethyl acrylamide) coated magnetic nanoparticles (MNP). FT-IR, TEM, TGA, VSM, XRD, EDX, and CHN analysis were used for characterization of catalyst. Variety of sulfides successfully converted to the related sulfoxides using 1 mol% of catalyst at room temperature in high yields. The catalyst was easily recovered and reused up to 6 times without loss of activity
Tungstate-loaded triazine-based magnetic poly(Bis-imidazolium ionic liquid): An effective bi-functional catalyst for tandem selective oxidation/Knoevenagel condensation in water
, Article Polymer (United Kingdom) ; Volume 112 , 2017 , Pages 342-350 ; 00323861 (ISSN) ; Tavakolizadeh, M ; Hosseini, S. H ; Pourjavadi, A ; Bennett, C ; Sharif University of Technology
Elsevier Ltd
2017
Abstract
A novel bi-functional polymeric catalyst was synthesized by immobilization of tungstate anions onto the nitrogen rich poly(ionic liquid)/magnetic nanocomposite. The resulting catalyst has two types of catalytic sites: (i) immobilized WO4 anions with bis-imidazolium ionic liquid cation for selective oxidation of alcohols and (ii) basic amine groups for Knoevenagel condensation between produced aldehyde and malononitrile. Due to the polymeric nature of the catalyst, large amounts of tungstate and basic nitrogen groups were presented on the solid surface which led to a decrease in the applied catalyst mass for catalytic reaction. High catalytic activity and excellent selectivity of catalyst in...
Highly dispersible bis-imidazolium/WO4 2 modified magnetic nanoparticles: a heterogeneous phase transfer catalyst for green and selective oxidations
, Article New Journal of Chemistry ; Volume 40, Issue 12 , 2016 , Pages 10325-10332 ; 11440546 (ISSN) ; Tavakolizadeh, M ; Hosseini, S. H ; Jahani, M ; Pourjavadi, A ; Bennett, C ; Sharif University of Technology
Royal Society of Chemistry
2016
Abstract
A novel magnetically recoverable catalyst was prepared in which magnetic nanoparticles (MNPs) were functionalized by bis-imidazolium tungstate ionic liquid molecules. The resulting catalyst was highly dispersible in water and selectively oxidized a wide range of alcohols and sulfides using H2O2 as a green oxidant. The catalyst was easily recovered and reused at least 5 times under the described reaction conditions without any significant loss of reactivity
3D distributed modeling of trolling-mode AFM during 2D manipulation of a spherical cell
, Article Journal of Nanoparticle Research ; Volume 23, Issue 4 , 2021 ; 13880764 (ISSN) ; Nejat Pishkenari, H ; Mohammadi Moghaddam, M ; Sharif University of Technology
Springer Science and Business Media B.V
2021
Abstract
In this study, a general 3D distributed modeling of Trolling-Mode AFM (TR-AFM) as a nanorobot is presented to analyze the 2D manipulation process of a spherical cell. To this aim, the analysis is categorized into 3 sections. In the first section, 6 deformations of TR-AFM are taken into account, and the standard model of the system is obtained. Moreover, the system is simulated in ANSYS Workbench. The results of modal and transient analyses of the system from both analytical and software methods reveal high agreement, which confirms the accuracy of the presented analytical model. In the second section, by utilizing the 3D derived model, displacement of a spherical yeast single cell (W303)...
Sol-gel nanostructured titanium dioxide: Controlling the crystal structure, crystallite size, phase transformation, packing and ordering
, Article Microporous and Mesoporous Materials ; Volume 112, Issue 1-3 , 2008 , Pages 392-402 ; 13871811 (ISSN) ; Fray, D. J ; Mohammadi, A ; Sharif University of Technology
2008
Abstract
The anatase phase of titania was stabilised with physically modifying particulate sol-gel process. Two major parameters, peptisation temperature and drying temperature, were identified which were responsible for retarding the anatase to rutile phase transformation, crystal growth and packing of primary particles. The critical nucleus size of transformation was controlled by natural (at 25 °C) and artificial (at 50 and 70 °C) peptisation techniques. Moreover, sintering of primary particles was controlled by cool (at 0 and 5 °C) and normal (at 25 °C) drying techniques. Fourier transform infrared spectroscopy (FT-IR) analysis confirmed that a full conversion of titanium isopropoxide is obtained...
Electrokinetic mixing and displacement of charged droplets in hydrogels
, Article Transport in Porous Media ; Vol. 104, Issue. 3 , Jun , 2014 , pp. 469-499 ; ISSN: 01693913 ; Sharif University of Technology
2014
Abstract
Mixing in droplets is an essential task in a variety of microfluidic systems. Inspired by electrokinetic mixing, electric field-induced hydrodynamic flow inside a charged droplet embedded in an unbounded polyelectrolyte hydrogel is investigated theoretically. In this study, the polyelectrolyte hydrogel is modeled as a soft, and electrically charged porous solid saturated with a salted Newtonian fluid, and the droplet is considered an incompressible Newtonian fluid. The droplet-hydrogel interface is modeled as a surface, which is located at the plane of shear, with the electrostatic potential ζ. The fluid inside the droplet attains a finite velocity owing to hydrodynamic coupling with the...
Electric-field-induced response of a droplet embedded in a polyelectrolyte gel
, Article Physics of Fluids ; Volume 25, Issue 8 , 2013 ; 10706631 (ISSN) ; Sharif University of Technology
2013
Abstract
The electric-field induced response of a droplet embedded in a quenched polyelectrolyte gel is calculated theoretically. The response comprises the droplet translation and the electric-field induced flow fields within the droplet. The gel is modeled as a soft, and electrically charged porous solid saturated with a salted Newtonian fluid. The droplet is considered an incompressible Newtonian fluid with no free charge. An analytical solution, using the perturbation methodology and linear superposition, is obtained for the leading-order steady response to a DC electric-field. The fluid within the droplet is driven due to hydrodynamic coupling with the electroosmotic flow. The fluid velocity...
Oscillatory response of charged droplets in hydrogels
, Article Journal of Non-Newtonian Fluid Mechanics ; Volume 234 , 2016 , Pages 215-235 ; 03770257 (ISSN) ; Sharif University of Technology
Elsevier
2016
Abstract
Characterization of droplet-hydrogel interfaces is of crucial importance to engineer droplet-hydrogel composites for a variety of applications. In order to develop electrokinetic diagnostic tools for probing droplet-hydrogel interfaces, the displacement of a charged droplet embedded in a polyelectrolyte hydrogel exposed to an oscillating electric field is determined theoretically. The polyelectrolyte hydrogel is modeled as an incompressible, charged, porous, and elastic solid saturated with a salted Newtonian fluid. The droplet is considered an incompressible Newtonian fluid with no charges within the droplet. The droplet-hydrogel interface is modeled as a surface with the thickness of zero...
Transport in droplet-hydrogel composites: response to external stimuli
, Article Colloid and Polymer Science ; Volume 293, Issue 3 , March , 2015 , Pages 941-962 ; 0303402X (ISSN) ; Sharif University of Technology
Springer Verlag
2015
Abstract
Determination of effective transport properties of droplet-hydrogel composites is essential for various applications. The transport of ions through a droplet-hydrogel composite subjected to an electric field is theoretically studied as an initial step toward quantifying the effective transport properties of droplet-hydrogel composites. A three-phase electrokinetic model is used to derive the microscale characteristics of the polyelectrolyte hydrogel, and the droplet is considered an incompressible Newtonian fluid. The droplet-hydrogel interface is modeled as a surface, which encloses the interior fluid. The surface has the thickness of zero and the electrostatic potential ζ. Standard...
A simple particulate sol-gel route to synthesize nanostructural TiO2-Ta2O5 binary oxides and their characteristics
, Article Materials Science and Engineering B: Solid-State Materials for Advanced Technology ; Volume 142, Issue 1 , 2007 , Pages 16-27 ; 09215107 (ISSN) ; Fray, D. J ; Sadrnezhaad, S. K ; Mohammadi, A ; Sharif University of Technology
2007
Abstract
Nanostructured and mesoporous TiO2-Ta2O5 films and powders with various TiO2:Ta2O5 molar ratios and high specific surface area (SSA) have been prepared by a straightforward particulate sol-gel route. Titanium isopropoxide and tantalum ethoxide were used as precursors and hydroxypropyl cellulose (HPC) was used as a polymeric fugitive agent (PFA) in order to increase the SSA. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that powders contained both hexagonal δ-Ta2O5 and monoclinic β-Ta2O5 phases, as well as anatase and rutile. It was observed that Ta2O5 retarded anatase-to-rutile transformation. Furthermore, δ → β phase transformation temperature increased...
Correction to: Controlled manipulation of a bio-particle using trolling mode atomic force microscope: a simulation study (Journal of Nanoparticle Research, (2021), 23, 10, (221), 10.1007/s11051-021-05301-6)
, Article Journal of Nanoparticle Research ; Volume 24, Issue 8 , 2022 ; 13880764 (ISSN) ; Nejat Pishkenari, H ; Mohammadi Moghaddam, M ; Sajjadi, M ; Sharif University of Technology
Springer Science and Business Media B.V
2022
Abstract
The original article contained a mistake in Equation 1. The corrected Equation 1 is shown below: MX+Cx+Kx=f.The original article has been updated © Springer Nature B.V. 2022
Experimental investigation of thermal resistance of a ferrofluidic closed-loop pulsating heat pipe
, Article Heat Transfer Engineering ; Vol. 35, issue. 1 , 2014 , pp. 25-33 ; ISSN: 01457632 ; Mohammadi, M ; Ghahremani, A. R ; Shafii, M. B ; Mohammadi, N ; Sharif University of Technology
2014
Abstract
For the present article, a pulsating heat pipe (PHP) is fabricated and tested experimentally by bending a copper tube. The effects of working fluid, heat input, charging ratio, inclination angle, magnets location, and ferrofluid (magnetic nanofluid) volumetric concentration have been investigated on the thermal performance of this PHP. Experimental results show that using ferrofluid as a working fluid improves the thermal performance of the PHP significantly. Moreover, applying a magnetic field on a ferrofluidic PHP reduces its thermal resistance. By changing the inclination angle of the PHP from vertical mode to angles close to the horizontal mode, the present PHP has a constant and...
Bromo-lithium Exchange Reaction in Organic Synthesis and Continuous Separation of Organic and Aqueous phase Reactions by Microfloid Technique
, M.Sc. Thesis Sharif University of Technology ; Mohammadi, Ali Asghar (Supervisor) ; Bastani, Dariush (Supervisor)
Abstract
Today, with the development of micro-technology in chemical reactions, the use of appropriate systems for the separation and purification of synthesized chemicals seems to be necessary. In this study, the continuous synthesis of bromide-lithium exchange reaction and the separation of organic and aqueous phase products in micro systems was investigated.The method used to construct micro-separator and micro reactor, a laser engraving technique, and thermal bonding of glass to glass.In the first step, the factors affecting the separation of organic and aqueous phase in the capillary micro-separator, such as the width of the capillary, the length of the capillary, the number of capillaries and...