Loading...
Search for: mohseni-ashtiani--elnaz
0.17 seconds

    Urban Accident Prediction Models based on Urban Transportation Planning Process

    , M.Sc. Thesis Sharif University of Technology Mohseni Ashtiani, Elnaz (Author) ; Nassiri, Habibollah (Supervisor)
    Abstract
    In recent years, most of the researches in Urban Transportation Planning have been in the areas of prediction and management of transportation demand, increasing the capacity of roads and reducing traffic congestion. In spite of several studies which were performed in the field of collisions prediction modeling for highways and freeways, these models were not applicable to long-term transportation planning process due to their inability to accurately predict variables for future long-term transportation planning.In this study, Aggregate Crash Prediction Models (ACPMs) were performed using the Socio-economics, land use and street network information of 253 traffic zone. This information was... 

    QoS-aware Dynamic Cache Updating Policies in a Wireless CDN

    , M.Sc. Thesis Sharif University of Technology Kazari, Kiarash (Author) ; Ashtiani, Farid (Supervisor) ; Mir-Mohseni, Mahtab (Supervisor)
    Abstract
    Caching is the process of storing part of popular contents near the users, which not only results in better traffic balance, but also reduces the delay of content delivery. Due to limited cache capacities and time-varying nature of contents popularity, using a proper replacement policy for cached contents during the heavy traffic hours is necessary. Many of the existing methods have ignored the dynamics of requests. Also, most of the previous works have focused on parameters other than QoS characteristics as the performance metric.We propose a cache updating policy for wireless networks considering dynamic popularity for file requests. Our model is a wireless heterogeneous network consisting... 

    Bio-inspired nanostructured sensor for the detection of ultralow concentrations of explosives [electronic resource]

    , Article Journal of Angewandte Chemie International Edition ; 29 May 2012, Volume 51, Issue 22, P.5334-5338 Dourandish, M. (Mahdi) ; Simchi, A. (Abdolreza) ; Tamjid Shabestary, Elnaz ; Hartwig, Thomas ; Sharif University of Technology
    Abstract
    TNT: Silicon microcantilevers modified with a three-dimensional layer of vertical titanium dioxide nanotubes can be used in micromechanical sensors with optical signal detection to detect low levels of explosives such as 2,4,6-trinitrotoluene (TNT) in the gas phase, even in the presence of other volatile impurities such as n-heptane and ethanol  

    Surface Modification of Bacterial Cellulose-Reinforced Keratin Nanofibers using Pluronic/Gum Tragacanth Hydrogel Nanoparticles Produced by Concurrent gel Electrospray/Polymer Electrospinning Method

    , M.Sc. Thesis Sharif University of Technology Azarniya, Amir (Author) ; Simchi, Abdolreza (Supervisor) ; Tamjid, Elnaz (Supervisor)
    Abstract
    In this work, wool keratin/polyethylene oxide (PEO) nanofibrous scaffolds were fabricated by electrospinning method. Bacterial cellulose nanofibrils (BCNFs) were embedded in the electrospun keratin/PEO nanofibers. Incorporation of BCNFs into the nanofibers enhances their hydrophilicity, mechanical properties and cell viability, adhesion and proliferation. Water contact angle of the nanofibers decreased from 126˚ to 83˚by addition of 1 wt % BCNFs. A thermogelling hydrogel based on carboxylated pluronic (Pl-COOH) and gum tragacanth (GT) was fabricated and polymer conjugation was confirmed by FTIR and H-NMR spectroscopy. Morphological and viscoelastic properties of GT-grafted Pl-COOH hydrogels... 

    Generation and Optimization of High-order Harmonics in the Interaction of Laser with N2O Molecule

    , M.Sc. Thesis Sharif University of Technology Monfared, Mohammad (Author) ; Sadighi-Bonabi, Rasoul (Supervisor) ; Irani, Elnaz (Co-Supervisor)
    Abstract
    The X-ray attosecond pulses have many useful applications for studying atomic and sub-atomic scales phenomena in attosecond scale duration. Generation and optimization of high-order harmonics is an efficient way to produce such attosecond pulses which are studied in this thesis. There are several limitations in the attosecond pulse generation such as low efficiency of high-order harmonics, long duration of output pulses and the impossibility of producing an attosecond pulse with any desired wavelength in the x-ray region. Therefore, more investigations into high harmonic generation and fully control and optimization of this process is significant. In this thesis, high harmonic generation... 

    Investigation of Highly Concentrated Phenolic Wastewater Treatment in a Membrane Biological Reactor (MBR), and Evaluation of Furfural upon Phenol Biodegradation by an Acclimated Activated Sludge

    , M.Sc. Thesis Sharif University of Technology Mohseni, Mojtaba (Author) ; Borghei, Mehdi (Supervisor)
    Abstract
    Phenolic compounds are hazardous pollutants that are released into environment through wastewater discharges from variety of industries. Although good biodegradability has been reported at low concentrations, but at higher concentrations phenols are known to be antibacterial. In this study the Membrane Biological Reactor (MBR) with submerged hallow fiber membrane was operated at 25±2 ºC and pH=7.5±0.5 to treat a synthetic wastewater containing high phenol concentration (up to 5.9 g/l). Removal efficiency of phenol and COD were evaluated at four various “Hydraulic Retention Times” (HRT) of 24, 12, 8 and 4 hours. To test the tolerance of the bioreactor to phenol concentration various loading... 

    Robust Optimization for Simulated Systems Using Risk Management and Kriging

    , M.Sc. Thesis Sharif University of Technology Mohseni, Ali (Author) ; Mahlooji, Hashem (Supervisor)
    Abstract
    Many simulation optimization problems are defined in random settings and their inputs have uncertainty. Therefore, in defining an optimal solution for these problems, uncertainties should be taken into account. The primary way of dealing with this , is Robust Optimization which finds solution immune to these changing settings. Aiming at finding a new approach for simulation optimization problems, this study investigates these uncertainties and robust methods. In the optimization problem, the goal and constraints are considered with separate risk measures and a related problem is defined as follows: Minimizing the weighted sum of all risks subject to the problem constraints. To solve the... 

    Role of Spirit in the Formation of Knowledge in Terms of Transcendent Wisdom

    , M.Sc. Thesis Sharif University of Technology Mohseni, Hossein (Author) ; Hosseini, Hassan (Supervisor)
    Abstract
    One of issues of human in this time is questions about epistemology. Human sometimes faced with this qustion that "Is it any knowledge for human being". Sometime he or she answers this question: yes and search for any knowledge around him or her. In the context of philosophy of science these question are very imortant. In philosophy of science one of major question is how many of factors in science is subjective and how many is objective? It is obvious that one of solution to answer this question is investigation of factors that construct the knowledege. Furthermore in this thesis I try to answer that question in context of Hikmat' Motealieh. In this context all of factors that involved in... 

    Designing and Implementing a Cluster-based Energy-aware Routing Algorithm for Wireless Sensor Network

    , M.Sc. Thesis Sharif University of Technology Mohseni, Mina (Author) ; Miremadi, Ghasem (Supervisor)
    Abstract
    Wireless Sensor Networks (WSNs) consist of sensor nodes that are connected to each other and are widely used in many applications to acquire and process information. WSN nodes are battery powered, therefore energy management is a key factor for long live network. Node radio transceiver unit uses the most part of energy resource of the node and as a result limits the network lifetime. One way to prolong lifetime of network is to utilize routing protocols to manage energy consumption. To have an energy efficient protocol, we can apply cluster organization on the network, where sensor nodes are partitioned into groups called cluster. Then, the whole cluster data is sent through Cluster Head... 

    Tensor-based face representation and recognition using multi-linear subspace analysis

    , Article 2009 14th International CSI Computer Conference, CSICC 2009, 20 October 2009 through 21 October 2009, Tehran ; 2009 , Pages 658-663 ; 9781424442621 (ISBN) Mohseni, H ; Kasaei, S ; Sharif University of Technology
    2009
    Abstract
    Discriminative subspace analysis is a popular approach for a variety of applications. There is a growing interest in subspace learning techniques for face recognition. Principal component analysis (PCA) and eigenfaces are two important subspace analysis methods have been widely applied in a variety of areas. However, the excessive dimension of data space often causes the curse of dimensionality dilemma, expensive computational cost, and sometimes the singularity problem. In this paper, a new supervised discriminative subspace analysis is presented by encoding face image as a high order general tensor. As face space can be considered as a nonlinear submanifold embedded in the tensor space, a... 

    Fault diagnosis in robot manipulators in presence of modeling uncertainty and sensor noise

    , Article Proceedings of the IEEE International Conference on Control Applications, 8 July 2009 through 10 July 2009, Saint Petersburg ; 2009 , Pages 1750-1755 ; 9781424446025 (ISBN) Mohseni, S ; Namvar, M ; Sharif University of Technology
    2009
    Abstract
    In this paper, we introduce a new approach to fault detection and isolation for robot manipulators. Our technique is based on using a new simplified Euler-Lagrange (EL) equation that reduces complexity of the proposed fault detection method. The proposed approach isolates the faults and is capable of handling the uncertainty in manipulator gravity vector. It is shown that the effect of uncalibrated torque sensor measurement is asymptotically rejected in the detection process. A simulation example is presented to illustrate the results. © 2009 IEEE  

    Radiative Mass Correction in Supersymmetric Field Theories and its Implications for Supersymmetry Phenomenology

    , M.Sc. Thesis Sharif University of Technology Mohseni, Amineh (Author) ; Torabian, Mahdi (Supervisor)
    Abstract
    During years, supersymmetry has been a candidate for resolution of Higgs mass fine-tuning problem that is quadratic dependence of scalar mass radiative correction to UV-physics. So, supersymmetry phenomenology is of great importance. As accelerators have reached energy of 13 TeV in recent years and sparticles have not yet been observed, it is important to have a theory in hand, describing SUSY breaking dynamics with scale of SUSY breaking above the energies currently accessible to accelerators. As a result of mass-sum-rule constraint which holds in theories with spontaneous SUSY breaking at tree level and leads to light sparticles and even tachyonic directions, there are currently no... 

    Automatic localization of cephalometric landmarks

    , Article ISSPIT 2007 - 2007 IEEE International Symposium on Signal Processing and Information Technology, Cairo, 15 December 2007 through 18 December 2007 ; 2007 , Pages 396-401 ; 9781424418350 (ISBN) Mohseni, H ; Kasaei, S ; Sharif University of Technology
    2007
    Abstract
    Cephalometric analysis has an important role in diagnosis and treatment of dental disharmonies. In this paper, we propose an efficient, fast, and automatic method to localize cephalometric landmarks on digitized x-ray images. The proposed algorithm uses the information of the marked landmarks on a reference normal cephalometry image as the prior knowledge. In the first step of the proposed method, the image is automatically divided into several regions and three main control points are located on it. These are then matched to their corresponding points on the reference image to form an affine transform matrix that describes how other points on the reference image should be mapped to the... 

    Human Whole-Body Static 3D Posture Prediction in One- and Two-Handed Lifting Tasks from Different Load Positions using Machine Learning

    , M.Sc. Thesis Sharif University of Technology Mohseni, Mahdi (Author) ; Arjmand, Navid (Supervisor)
    Abstract
    Biomechanical models require body posture to evaluate the risk of musculoskeletal injuries during daily/occupational activities like manual material handling (MMH). The procedure to measure body posture via motion-analysis techniques is complex, time-consuming, and limited to equipped laboratories. This study aims to develop an easy-to-use yet accurate model that predict human whole-body static posture (3D body coordinates and anatomical joint angles) during different MMH activities. Twenty healthy male right-handed individuals with body mass index between 18 and 26 performed 204 symmetric and asymmetric MMH activities. Each person reached (i.e., without any load in hands) the destinations... 

    Topology optimization for manufacturability of Additive Manufacturing based on Deep Learning and Generative Adversarial Network

    , M.Sc. Thesis Sharif University of Technology Mohseni, Maedeh (Author) ; Khodaygan, Saeed (Supervisor)
    Abstract
    In recent years, Additive Manufacturing has been extensively used by various industries. These manufacturing processes produce components in a layer-by-layer manner; therefore, they do not impose any geometric constrains to engineers and provide designers with the freedom to design components. Nowadays, one of the primary goals of all industries is to utilize as few raw materials as possible; this way they can deal with the shortage of raw materials and improve their efficiency. Consequently, they implement topology optimization algorithms to design and produce their components. However, topology optimization algorithms result in complicated geometries that can only be fabricated by AM.... 

    Fabrication of 3D Graphene/Gold Porous Electrode for Biosensing Applications

    , M.Sc. Thesis Sharif University of Technology Rahmati, Reza (Author) ; Simchi, AbdolReza (Supervisor) ; Tamjid Shabestari, Elnaz (Supervisor)
    Abstract
    Today, the use of carbon nanostructures hybridized with noble metals has attracted considerable attention for the fabrication of bio-electrochemical sensors. Since the specific surface area has an immense effect on the sensing response, three-dimensional structures of graphene have a great capability to utilize in these sensors. In this research, three-dimensional graphene was provided on the porous nickel foam by chemical vapor deposition technique. By evaluation of raman spectroscopy, the time period of 20 minutes for solving of the carbon atoms into the nickel foam was selected as the main parameter of optimized conditions for the synthesis of graphene. Afterward, production of few-layer... 

    Sensitive Detection and Quantification of Nitrite Ions by Metal-organic Frameworks/Gold Nanocomposites

    , M.Sc. Thesis Sharif University of Technology Mahdavi, Hossein (Author) ; Simchi, Abdoolreza (Supervisor) ; Tamjid Shabestari, Elnaz (Supervisor)
    Abstract
    Nitrite (〖NO〗_2^-) anions are ubiquitous within the physiological, industrial, environmental, and food industries. The potential toxicity risk of these inorganic compounds has well been recognized; thus, the precise detection of these ions by developing reliable and high-throughput analytical methods is crucial for health and environment security. In this study, we present a reagentless electrochemical biosensor using cobalt-based metal-organic frameworks (ZIF-67) and gold nanoparticles (Au NPs) for determination of nitrite ions. The developed biosensor provides the advantages of MOF properties including high surface area, hierarchical porosity, and tunable functionalities along with high... 

    Highly conductive self-electrical stimuli core-shell conduit based on PVDF-chitosan–gelatin filled with in-situ gellan gum as a possible candidate for nerve regeneration: a rheological, electrical, and structural study

    , Article Applied Nanoscience (Switzerland) ; Volume 11, Issue 8 , 2021 , Pages 2199-2213 ; 21905509 (ISSN) Mohseni, M ; Ramazani Saadatabadi, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In the context of peripheral nerve injuries treatment, self-electrical stimuli nerve guidance conduit is a promising technique. To fabricate such structures, PVDF-chitosan–gelatin was considered for the outside walls of conduit and gellan gum containing conductive polyaniline-graphene (PAG) nanocomposite particles in the middle. PVDF-chitosan–gelatin nanofibers were prepared using the dual-electrospinning method and highly conductive binary-doped polyaniline-graphene was synthesized by chemical oxidative polymerization in the presence of aniline and sodium dodecyl sulfate. The morphology and chemical structure of nanofibers and PAG were characterized using SEM and FTIR analyses. The... 

    Temperature control of styrene bulk polymerization in a tubular reactor

    , Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) Ghafoor Mohseni, P ; Shahrokhi, M ; Sharif University of Technology
    2006
    Abstract
    Due to advantages of tubular polymerization reactors, a tubular reactor was used as the postpolymerizer for thermal bulk polymerization of styrene. By solving the mathematical model, static and dynamic simulations were carried out to study the reactor's behavior. In order to have a desired product regarding the monomer conversion and polydispersity at the reactor outlet, a specific temperature profile must be kept along the reactor's length. Based on the desired profile and using the system model, a trajectory for the jacket temperature was obtained. To apply the desired jacket temperature, the jacket is divided into three zones. The set-point of each zone has been obtained by discretizing... 

    Tissue growth into three‐dimensional composite scaffolds with controlled micro‐features and nanotopographical surfaces [electronic resource]

    , Article Journal of Biomedical Materials Research Part A ; October 2013, Vol. 101, Issue 10, Pages 2796-2807 Tamjid, E. (Elnaz) ; Simchi, A. (Abdolreza) ; Dunlop, John W. C ; Fratzl, Peter ; Bagheri, R ; Vossoughi, M ; Sharif University of Technology
    Abstract
    Controlling topographic features at all length scales is of great importance for the interaction of cells with tissue regenerative materials. We utilized an indirect three-dimensional printing method to fabricate polymeric scaffolds with pre-defined and controlled external and internal architecture that had an interconnected structure with macro- (400-500 μm) and micro- (∼25 μm) porosity. Polycaprolactone (PCL) was used as model system to study the kinetics of tissue growth within porous scaffolds. The surface of the scaffolds was decorated with TiO2 and bioactive glass (BG) nanoparticles to the better match to nanoarchitecture of extracellular matrix (ECM). Micrometric BG particles were...