Loading...
Search for: mohsenipour--reza
0.095 seconds

    Robust D-stability test of LTI general fractional order control systems

    , Article IEEE/CAA Journal of Automatica Sinica ; Volume 7, Issue 3 , May , 2020 , Pages 853-864 Mohsenipour, R ; Liu, X ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    This work deals with the robust D-stability test of linear time-invariant ( LTI ) general fractional order control systems in a closed loop where the system and - or the controller may be of fractional order. The concept of general implies that the characteristic equation of the LTI closed loop control system may be of both commensurate and non-commensurate orders, both the coefficients and the orders of the characteristic equation may be nonlinear functions of uncertain parameters, and the coefficients may be complex numbers. Some new specific areas for the roots of the characteristic equation are found so that they reduce the computational burden of testing the robust D-stability. Based on... 

    Robust D-stability testing function for LTI fractional order interval systems

    , Article 2nd IEEE Conference on Control Technology and Applications, CCTA 2018, 21 August 2018 through 24 August 2018 ; 2018 , Pages 1277-1282 ; 9781538676981 (ISBN) Mohsenipour, R ; Fathi Jegarkandi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    This paper investigates the robust D -stability test of LTI fractional order interval systems (FOISes). The D stability includes the performance of an LTI system in addition to stability. The coefficients of the system transfer function are uncertain parameters that each adopts a value in a real interval. Firstly, the concept of the value set is extended to the FOISes, and a necessary and sufficient condition is presented to study the robust D-stability of FOISes. Secondly, the value set of the FOISes is obtained analytically, and based on it a robust D- stability testing function is introduced to check the presented condition. The results obtained are applicable to systems of both... 

    A comment on “Algorithm of robust stability region for interval plant with time delay using fractional order PIλDμ controller” [Commun Nonlinear Sci Numer Simulat 17 (2012) 979–991]

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 63 , 2018 , Pages 202-204 ; 10075704 (ISSN) Mohsenipour, R ; Fathi Jegarkandi, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In Ref. [1], it has been claimed that the value set of a fractional order interval plant, having one uncertain time delay is a polygon. This note illustrates that this claim is not true, and in fact the value set has a nonconvex shape. Therefore, Theorem 3.1 and the stabilization algorithm presented in the reference to design a PIλDμ controller, are not true. © 2018 Elsevier B.V  

    Fractional order MIMO controllers for robust performance of airplane longitudinal motion

    , Article Aerospace Science and Technology ; Volume 91 , 2019 , Pages 617-626 ; 12709638 (ISSN) Mohsenipour, R ; Fathi Jegarkandi, M ; Sharif University of Technology
    Elsevier Masson SAS  2019
    Abstract
    This paper presents fractional order multi-input multi-output (MIMO) controllers for the robust performance of airplane longitudinal motion. A novel necessary and sufficient criterion is offered by using the value set concept to analyze the robust performance of fractional order MIMO uncertain systems based on the location of the characteristic equation roots. The criterion is applicable to all linear time-invariant systems of commensurate and incommensurate orders with complex coefficients. The obtained results are applied to an uncertain linear model of a business airplane to improve the robust performance of its longitudinal motion by decentralized MIMO output feedback and MIMO state... 

    Robust D-stability analysis of fractional order interval systems of commensurate and incommensurate orders

    , Article IET Control Theory and Applications ; Volume 13, Issue 8 , 2019 , Pages 1039-1050 ; 17518644 (ISSN) Mohsenipour, R ; Fathi Jegarkandi , M ; Sharif University of Technology
    Institution of Engineering and Technology  2019
    Abstract
    This study focuses on the robust D-stability analysis of fractional order interval systems (FOISes). The concept of interval means that the coefficients of the systems transfer functions are uncertain parameters that each adopts a value in a real interval. Initially, some new bounds on the poles of the FOISes are produced so that they reduce the computational burden in the case of the θ-stability. Then, the concept of the value set is extended to analyse the robust D-stability of the FOISes, and a new necessary and sufficient condition is presented. The value set of the FOISes is obtained analytically, and based on it an auxiliary function is introduced to check the condition. The obtained... 

    Robust D-stabilization analysis of fractional-order control systems with complex and linearly dependent coefficients

    , Article IEEE Transactions on Systems, Man, and Cybernetics: Systems ; 2020 Mohsenipour, R ; Fathi Jegarkandi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    This article focuses on the robust D-stabilization analysis of fractional-order control systems where each of the system and the controller may be of fractional order. The coefficients of the system are considered as complex linear functions of interval uncertain parameters, so this article deals with fractional-order polytopic systems. First, a necessary and sufficient condition is introduced for the robust D-stabilization of the closed-loop control system based on the zero exclusion condition and the value set concept. Then, the geometric pattern of the value set of the characteristic polynomial is obtained analytically using the exposed vertices. Second, a function is presented to check... 

    Robust d-stability criterion for fractional order systems with uncertainties in both the coefficients and orders

    , Article 2018 Annual American Control Conference, ACC 2018, 27 June 2018 through 29 June 2018 ; Volume 2018-June , 2018 , Pages 4238-4242 ; 07431619 (ISSN) ; 9781538654286 (ISBN) Mohsenipour, R ; Fathi Jegarkandi, M ; Sharif University of Technology
    2018
    Abstract
    This paper investigates the robust D-stability criterion of fractional order systems with parametric uncertainties. Uncertainties are considered in the both coefficients and orders of the fractional order systems. To this end, some bounds on the roots of fractional order polynomials are obtained, helping to examine the robust D-stability criterion. Then, by using the zero exclusion principle a necessary and sufficient criterion to check the robust D-stability is presented. The obtained results can be applied to fractional order systems of both commensurate and incommensurate orders. One numerical example is given to verify the results. © 2018 AACC  

    Robust stability analysis of fractional-order interval systems with multiple time delays

    , Article International Journal of Robust and Nonlinear Control ; Volume 29, Issue 6 , 2019 , Pages 1823-1839 ; 10498923 (ISSN) Mohsenipour, R ; Fathi Jegarkandi, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    This paper investigates the robust stability analysis of fractional-order interval systems with multiple time delays, including retarded and neutral systems. A bound on the poles of fractional-order interval systems of retarded and neutral type is obtained. Then, the concept of the value set and zero exclusion principle is extended to these systems, and a necessary and sufficient condition is produced for checking the robust stability of them. The value set of the characteristic equation of the systems is obtained analytically and, based on it, an auxiliary function is introduced to check the zero exclusion principle. Finally, two numerical examples are given to illustrate the effectiveness... 

    Robust D-stability analysis of fractional order interval systems of commensurate and incommensurate orders

    , Article IET Control Theory and Applications ; Volume 13, Issue 8 , 2019 , Pages 1039-1050 ; 17518644 (ISSN) Mohsenipour, R ; Fathi Jegarkandi, M ; Sharif University of Technology
    Institution of Engineering and Technology  2019
    Abstract
    This study focuses on the robust D-stability analysis of fractional order interval systems (FOISes). The concept of interval means that the coefficients of the systems transfer functions are uncertain parameters that each adopts a value in a real interval. Initially, some new bounds on the poles of the FOISes are produced so that they reduce the computational burden in the case of the θ-stability. Then, the concept of the value set is extended to analyse the robust D-stability of the FOISes, and a new necessary and sufficient condition is presented. The value set of the FOISes is obtained analytically, and based on it an auxiliary function is introduced to check the condition. The obtained... 

    Robust D-stabilization analysis of fractional-order control systems with complex and linearly dependent coefficients

    , Article IEEE Transactions on Systems, Man, and Cybernetics: Systems ; Volume 52, Issue 3 , 2022 , Pages 1823-1837 ; 21682216 (ISSN) Mohsenipour, R ; Fathi Jegarkandi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This article focuses on the robust D-stabilization analysis of fractional-order control systems where each of the system and the controller may be of fractional order. The coefficients of the system are considered as complex linear functions of interval uncertain parameters, so this article deals with fractional-order polytopic systems. First, a necessary and sufficient condition is introduced for the robust D-stabilization of the closed-loop control system based on the zero exclusion condition and the value set concept. Then, the geometric pattern of the value set of the characteristic polynomial is obtained analytically using the exposed vertices. Second, a function is presented to check... 

    Adaptive integrated guidance and fault tolerant control using backstepping and sliding mode

    , Article International Journal of Aerospace Engineering ; Volume 2015 , September , 2015 ; 16875966 (ISSN) Jegarkandi, M. F ; Ashrafifar, A ; Mohsenipour, R ; Sharif University of Technology
    Hindawi Publishing Corporation  2015
    Abstract
    A new method of integrated guidance and control for homing missiles with actuator fault against manoeuvring targets is proposed. Model of the integrated guidance and control system in the pitch plane with actuator fault and some uncertainty is developed. A control law using combination of adaptive backstepping and sliding mode approaches is designed to achieve interception in the presence of bounded uncertainties and actuator fault. Simulation results show that new approach has better performance than adaptive backstepping and has good performance in the presence of actuator fault  

    Robust D-stability Analysis of a Class of Interval Fractional Order Systems

    , Ph.D. Dissertation Sharif University of Technology Mohsenipour, Reza (Author) ; Fathi Jegarkandi, Mohsen (Supervisor)
    Abstract
    Because of advancing fractional calculus and modeling physical phenomena by using fractional calculus more accurately than that by using integer calculus, and also existing uncertainties in models of real world systems, robust stability and performance analysis of fractional order systems are necessary. This thesis deals with the robust -stability analysis of LTI fractional order systems from kind of uncertain typical fractional order systems (UTFOS) and the robust stability analysis of LTI fractional order systems with delays from kind of uncertain retarded type systems (URTS) and uncertain neutral type systems (UNTS) with interval uncertainties. The coefficients of the numerator and the... 

    A misbehavior‐tolerant multipath routing protocol for wireless Ad hoc networks [electronic resource]

    , Article International Journal of Research in Wireless Systems (IJRWS) ; Vol. 2, Issue 9, pp. , Sep. 2013 Sedghi, H. (Haniyeh) ; Pakravan, Mohammad Reza ; Aref, Mohammad Reza ; Sharif University of Technology
    Abstract
    Secure routing is a major key to service maintenance in ad hoc networks. Ad hoc nature exposes the network to several types of node misbehavior or attacks. As a result of the resource limitations in such networks nodes may have a tendency to behave selfishly. Selfish behavior can have drastic impacts on network performance. We have proposed a Misbehavior-Tolerant Multipath Routing protocol (MTMR) which detects and punishes all types of misbehavior such as selfish behavior, wormhole, sinkhole and grey-hole attacks. The protocol utilizes a proactive approach to enforce cooperation. In addition, it uses a novel data redirection method to mitigate the impact of node misbehavior on network... 

    Analysis and data-based reconstruction of complex nonlinear dynamical systems : using the methods of stochastic processes

    , Book Rahimi Tabar, M. Reza
    Springer International Publishing  2019
    Abstract
    This book focuses on a central question in the field of complex systems: Given a fluctuating (in time or space), uni- or multi-variant sequentially measured set of experimental data (even noisy data), how should one analyse non-parametrically the data, assess underlying trends, uncover characteristics of the fluctuations (including diffusion and jump contributions), and construct a stochastic evolution equation?
    Here, the term "non-parametrically" exemplifies that all the functions and parameters of the constructed stochastic evolution equation can be determined directly from the measured data.
    The book provides an overview of methods that have been developed for the analysis of... 

    Fabrication and Study of Mechanical Behavior of in Situ Microfibrillar- Reinforced Composites of Polypropylene/Recycled Poly (Ethylene Terephthalate)Toughened with Rubber Particles

    , M.Sc. Thesis Sharif University of Technology Motahari, Tayebeh (Author) ; Bagheri, Reza (Supervisor) ; Alizadeh, Reza (Supervisor)
    Abstract
    The use of polymers is increasing day by day due to low density, reasonable price and ability to produce different products. On the other hand, the accumulation of polymer wastes in nature is one of the environmental concerns in today's world, which is mainly due to the widespread use of polymers in the packaging industry and disposable applications. In order to solve this problem, recycling is recommended as the most appropriate and economical solution. Because in addition to consuming polymer waste, it also saves energy and reduces carbon footprint.Polyethylene terephthalate (PET) is one of the polymeric materials which; It has a special place in the packaging industry and is widely used... 

    Characterization of Mechanical Properties of Polymer Nanocomposites with Spherical Inhomogeneities

    , M.Sc. Thesis Sharif University of Technology Goudarzi, Taha (Author) ; Naghdabadi, Reza (Supervisor) ; Bagheri, Reza (Supervisor)
    Abstract
    The improved properties of nanocomposites are not achievable with conventional composites. Scale effect is one the most important parameters in the physical and mechanical properties of polymeric nanocomposites. One of the physical phenomena, which can be related to the scale effect, is the very large interface between the nanoparticles and the polymeric matrices. Motional behavior and conformation of polymeric chains change near the nanoparticles surfaces. Due to high interface of the nanoparticles with the polymeric matrices the amount of these types of changes in the polymeric chains are so large that can change the physical and mechanical properties of polymeric nanocomposites. In this... 

    On small uniquely vertex-colourable graphs and Xu's conjecture [electronic resource]

    , Article Discrete Mathematics ; Volume 223, Issues 1–3, 28 August 2000, Pages 93–108 Daneshgar, A. (Amir) ; Naserasr, Reza ; Sharif University of Technology
    Abstract
    Consider the parameter Λ(G) = |E(G)| - |V(G)|(k - 1) + (k2) for a k-chromatic graph G, on the set of vertices V(G) and with the set of edges E(G). It is known that Λ(G)≥0 for any k-chromatic uniquely vertex-colourable graph G (k-UCG), and, S.J. Xu has conjectured that for any k-UCG, G, Λ(G) = 0 implies that cl(G) = k; in which cl(G) is the clique number of G. In this paper, first, we introduce the concept of the core of a k-UCG as an induced subgraph without any colour-class of size one, and without any vertex of degree k - 1. Considering (k, n)-cores as k-UCGs on n vertices, we show that edge-minimal (k, 2k)-cores do not exist when k ≥ 3, which shows that for any edge-minimal k-UCG on 2k... 

    Molecular Dynamics Simulation of Nano-Diamond Synthesis by Shock Wave

    , Ph.D. Dissertation Sharif University of Technology Mahnama, Maryam (Author) ; Naghdabadi, Reza (Supervisor) ; Movahhedy, Mohammad Reza (Co-Advisor)
    Abstract
    In the field of high-pressure material science, diverse carbon systems under pressure have been intensively studied with interest in synthesizing new phases. A variety of these synthetic phases which have met various applications in today technology are called the amorphous diamond. The pressure-induced structural transition of carbonaceous material to amorphous diamond is realized by shock compression and rapid quenching. The shock compression and rapid quenching generate the high pressure (several GPa) and the temperature (several hundred K) in a fraction of a microsecond.Since the mechanical and electrical properties of the synthetic diamond are severely sensitive to the atomic structure,... 

    An Experimental Study of the Effects of Sweep Wing on the Boundary Layer of 2D Wing

    , M.Sc. Thesis Sharif University of Technology Tabrizian, Arshia (Author) ; Soltani, Mohammad Reza (Supervisor) ; Davari, Ali Reza (Co-Advisor)
    Abstract
    The behavior of boundary layer under the effect of the sweep angle is considered. The measurements were performed by a pitot tube rake. Three models with various sweep angels at angles of attack -2, 0 and 2 degree were tested. Both tip and root of all wings were closed by flat plates in order to prevent the flow to roll-up. However the flow field on the wing was still three-dimensional because of the sweep angle. The velocity on the wing has two components; longitudinal and lateral. The cross flow emerges due to the non-equilibrium of pressure and centrifugal forces. The velocity profiles showed that the magnitude of cross flow was stronger near the leading edge of the wing. The cross flow... 

    Synthesis of Antibiotic-eluting Chitosan-based Composite Coating by Electrophoretic Deposition for Bone Implants

    , M.Sc. Thesis Sharif University of Technology Bakhshi, Zahra (Author) ; Simchi, Abdol Reza (Supervisor) ; Bagheri, Reza (Supervisor)
    Abstract
    Drug-eluting bone implant coatings is a new era that has gained a lot of attention in recent years. In this matter, drug is loaded in the coating and local and targeted release of the drug results in preventing the side effects of implantation and increasing the healing process of the patient. The aim of this project was to synthesis the antibiotic eluting chitosan-based composite using electrophoretic deposition for bone implant coating. By using electrophoretic deposition chitosan and chitosan-bioglass composite coatings were synthesized. Then the probability of loading of drug into coating by using electrophoretic deposition was evaluated and by using this process chitosan and...