Loading...
Search for: montazeri-ghahjaverestan--nasim
0.098 seconds

    MEG based Classification of Motor Imagery Tasks

    , M.Sc. Thesis Sharif University of Technology Montazeri Ghahjaverestan, Nasim (Author) ; Shamsollahi, Mohammad Bagher (Supervisor)
    Abstract
    BCI is an interface between brain and machine, particularly computer which translates brain signals into understandable instructions for machine. BCI records signals and determines what the subject is doing or thinking. BCI in the point of view of pattern recognition is a classification problem. For this aim, different tasks are referred to different classes. The more number of classes, the higher complexity we encounter in classification so surveying of different kinds of features, feature selection and reduction methods have highly importance. In this project we want to design a 4-class classification that each class is referred to a direction of wrist movement. During the time that the... 

    Early Detection of Cardiac Arrhythmia Based on Bayesian Methods from ECG Data

    , Ph.D. Dissertation Sharif University of Technology Montazeri Ghahjaverestan, Nasim (Author) ; Shamsollahi, Mohammad Bagher (Supervisor) ; Hernandez, Alfredo (Co-Advisor)
    Abstract
    Apnea Bradycardia (AB) episodes (breathing pauses associated with a significant fall in heart rate) are the most common disease in preterm infants. Consequences associated with apnea-bradycardia episodes involve a compromise in oxygenation and tissue perfusion, a poor neuromotor prognosis at childhood and a predisposing factor to sudden-death syndrome in preterm newborns. It is therefore important that these episodes are recognized (early detected or predicted if possible), to start an appropriate treatment and to prevent the associated risks. In this thesis, we propose two Bayesian Network (BN) approaches (Markovian and Switching Kalman Filter) for the early detection of apnea bradycardia... 

    Apnea bradycardia detection based on new coupled hidden semi Markov model

    , Article Medical and Biological Engineering and Computing ; 12 November , 2020 Montazeri Ghahjaverestan, N ; Shamsollahi, M. B ; Ge, D ; Beuchee, A ; Hernandez, A. I ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2020
    Abstract
    In this paper, a method for apnea bradycardia detection in preterm infants is presented based on coupled hidden semi Markov model (CHSMM). CHSMM is a generalization of hidden Markov models (HMM) used for modeling mutual interactions among different observations of a stochastic process through using finite number of hidden states with corresponding resting time. We introduce a new set of equations for CHSMM to be integrated in a detection algorithm. The detection algorithm was evaluated on a simulated data to detect a specific dynamic and on a clinical dataset of electrocardiogram signals collected from preterm infants for early detection of apnea bradycardia episodes. For simulated data, the... 

    Detection of Apnea Bradycardia from ECG Signals of Preterm Infants Using Layered Hidden Markov Model

    , Article Annals of Biomedical Engineering ; Volume 49, Issue 9 , 2021 , Pages 2159-2169 ; 00906964 (ISSN) Sadoughi, A ; Shamsollahi, M. B ; Fatemizadeh, E ; Beuchée, A ; Hernández, A. I ; Montazeri Ghahjaverestan, N ; Sharif University of Technology
    Springer  2021
    Abstract
    Apnea-bradycardia (AB) is a common complication in prematurely born infants, which is associated with reduced survival and neurodevelopmental outcomes. Thus, early detection or predication of AB episodes is critical for initiating preventive interventions. To develop automatic real-time operating systems for early detection of AB, recent advances in signal processing can be employed. Hidden Markov Models (HMM) are probabilistic models with the ability of learning different dynamics of the real time-series such as clinical recordings. In this study, a hierarchy of HMMs named as layered HMM was presented to detect AB episodes from pre-processed single-channel Electrocardiography (ECG). For... 

    Coupled hidden markov model-based method for apnea bradycardia detection

    , Article IEEE Journal of Biomedical and Health Informatics ; Volume 20, Issue 2 , 2016 , Pages 527-538 ; 21682194 (ISSN) Montazeri Ghahjaverestan, N ; Masoudi, S ; Shamsollahi, M. B ; Beuchée, A ; Pladys, P ; Ge, D ; Hernández, A. I ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    In this paper, we present a novel framework for the coupled hidden Markov model (CHMM), based on the forward and backward recursions and conditional probabilities, given a multidimensional observation. In the proposed framework, the interdependencies of states networks are modeled with Markovian-like transition laws that influence the evolution of hidden states in all channels. Moreover, an offline inference approach by maximum likelihood estimation is proposed for the learning procedure of model parameters. To evaluate its performance, we first apply the CHMM model to classify and detect disturbances using synthetic data generated by the FitzHugh-Nagumo model. The average sensitivity and... 

    Investigation of the interphase effects on the mechanical behavior of carbon nanotube polymer composites by multiscale modeling

    , Article Journal of Applied Polymer Science ; Volume 117, Issue 1 , March , 2010 , Pages 361-367 ; 00218995 (ISSN) Montazeri, A ; Naghdabadi, R ; Sharif University of Technology
    2010
    Abstract
    In this article, a multiscale modeling procedure is implemented to study the effect of interphase on the Young's modulus of CNT/polymer composites. For this purpose, a three-phase RVE is introduced which consists of three components, i.e., a carbon nanotube, an interphase layer, and an outer polymer matrix. The nanotube is modeled at the atomistic scale using molecular structural mechanics. Moreover, three-dimensional elements are employed to model the interphase layer and polymer matrix. The nanotube and polymer matrix are assumed to be bonded by van der Waals interactions based on the Lennard-Jones potential at the interface. Using this Molecular Structural Mechanics/Finite Element... 

    Study the effect of viscoelastic matrix model on the stability of CNT/polymer composites by multiscale modeling

    , Article Polymer Composites ; Volume 30, Issue 11 , 2009 , Pages 1545-1551 ; 02728397 (ISSN) Montazeri, A ; Naghdabadi, R ; Sharif University of Technology
    2009
    Abstract
    In this article, a Molecular Structural Mechanics/Finite Element (MSM/FE) multiscale modeling of carbon nanotube/polymer composites with viscoelastic (VE) polymer matrix is introduced. The nanotube is modeled at the atomistic scale using structural molecular mechanics. The matrix deformation is analyzed by nonlinear finite element method considering VE behavior. The nanotube and matrix are assumed to be bonded by van der Waals interactions based on the Lennard-Jones potential at the interface. Using the MSM/FE multiscale model, we investigate the effect of carbon nanotube (CNT) on the improvement of mechanical stability of the nanocomposite. Also, the buckling behavior of these... 

    Investigating the effect of carbon nanotube defects on the column and shell buckling of carbon nanotube-polymer composites using multiscale modeling

    , Article International Journal for Multiscale Computational Engineering ; Volume 7, Issue 5 , 2009 , Pages 431-444 ; 15431649 (ISSN) Montazeri, A ; Naghdabadi, R ; Sharif University of Technology
    2009
    Abstract
    Carbon nanotube (CNT)-reinforced polymer composites have attracted great attention due to their exceptionally high strength. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. In this article, a new three-phase molecular structural mechanics/finite element (MSM/FE) multiscale model is used to study the effect of CNT vacancy defects on the stability of single-wall (SW) CNT-polymer composites. The nanotube is modeled at the atomistic scale using MSM, whereas the interphase layer and polymer matrix are analyzed by the FE method. The nanotube and polymer matrix are assumed to be bonded by van der Waals interactions... 

    Controller Design for Nonlinear fractional Order Systems in the Presence of Input and Output Constraints

    , M.Sc. Thesis Sharif University of Technology Montazeri, Jalil (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    The purpose of this thesis is design of an adaptive tracking control for input-quantized strict-feedback fractional order nonlinear systems with unknown dynamics and asymmetric time-varying output constraints. The controller design is achieved by using a hysteretic quantizer to avoid chattering and not needing the quantization parameters. The fuzzy logic method has been used to solve the problem of unknown dynamics. Also, due to the asymmetric time-varying output constraints, the Barrier Lyapunov function has been used. In this thesis, less restrictive assumptions have been considered than the work performed in previous researches.By utilizing the adaptive backstepping approach and based on... 

    Investigation the stability of SWCNT-polymer composites in the presence of CNT geometrical defects using multiscale modeling

    , Article 4th International Conference on Multiscale Materials Modeling, MMM 2008, 27 October 2008 through 31 October 2008 ; 2008 , Pages 163-166 ; 9780615247816 (ISBN) Montazeri, A ; Naghdabadi, R ; Sharif University of Technology
    Department of Scientific Computing, Florida State University  2008
    Abstract
    CNT-reinforced polymer composites have attracted attention due to their exceptional high strength. The high strength can be affected by the presence of defects in the nanotubes used as reinforcements in the practical nanocomposites. In this paper, a Molecular Structural Mechanics / Finite Element (MSM/FE) multiscale modeling is used to study the effect of carbon nanotube geometrical defects on the stability of SWCNT-polymer composites. Here, two types of representative volume elements (RVEs) for these nanocomposites are considered with perfect and defected CNT. These RVEs have the same dimensions. The nanotube is modeled at the atomistic scale using molecular structural mechanics whereas the... 

    ECG fiducial point extraction using switching Kalman filter

    , Article Computer Methods and Programs in Biomedicine ; Volume 157 , 2018 , Pages 129-136 ; 01692607 (ISSN) Akhbari, M ; Montazeri Ghahjaverestan, N ; Shamsollahi, M. B ; Jutten, C ; Sharif University of Technology
    Elsevier Ireland Ltd  2018
    Abstract
    In this paper, we propose a novel method for extracting fiducial points (FPs) of the beats in electrocardiogram (ECG) signals using switching Kalman filter (SKF). In this method, according to McSharry's model, ECG waveforms (P-wave, QRS complex and T-wave) are modeled with Gaussian functions and ECG baselines are modeled with first order auto regressive models. In the proposed method, a discrete state variable called “switch” is considered that affects only the observation equations. We denote a mode as a specific observation equation and switch changes between 7 modes and corresponds to different segments of an ECG beat. At each time instant, the probability of each mode is calculated and... 

    Kinetics of Adsorption of DBT Sulfur Containing Compound of Gasoline via Nanostructured Adsorbent

    , M.Sc. Thesis Sharif University of Technology Montazeri, Mohammad (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    Based on the new standards, less than 10 ppm sulfur is allowed for the automotive fuels. This has led researchers to try improving the present conventional methods as well as seeking alternative routes for refinement of the petroleum products so much to comply with the requirements. Since thiophenic fragments such as dibenzothiophene (DBT) are the most durable sulfur compounds in the current hydrodisulfurization method, many studies have been conducted over recent years on how to remove these compounds. In this thesis, the desulfurization of dibenzothiophene from gasoline via adsorption method was studied. In order to carry out the adsorption process, a nanocomposite of graphitic-carbon... 

    Switching kalman filter based methods for apnea bradycardia detection from ECG signals

    , Article Physiological Measurement ; Volume 36, Issue 9 , 2015 , Pages 1763-1783 ; 09673334 (ISSN) Ghahjaverestan, N. M ; Shamsollahi, M. B ; Ge, D ; Hernandez, A. I ; Sharif University of Technology
    2015
    Abstract
    Apnea bradycardia (AB) is an outcome of apnea occurrence in preterm infants and is an observable phenomenon in cardiovascular signals. Early detection of apnea in infants under monitoring is a critical challenge for the early intervention of nurses. In this paper, we introduce two switching Kalman filter (SKF) based methods for AB detection using electrocardiogram (ECG) signal. The first SKF model uses McSharry's ECG dynamical model integrated in two Kalman filter (KF) models trained for normal and AB intervals. Whereas the second SKF model is established by using only the RR sequence extracted from ECG and two AR models to be fitted in normal and AB intervals. In both SKF approaches, a... 

    The Effect of Different SLS Parameters on the Density of Polymer-Metal Parts

    , M.Sc. Thesis Sharif University of Technology Montazeri, Ali (Author) ; Movahhedi, Mohammad Reza (Supervisor)
    Abstract
    Selective Laser Sintering (SLS) is one of the powder-based Additive Manufacturing (AM) technology in which parts built by CO2 laser. In this research work, Titanium-PMMA-Stearic Acid powders are mixed together to produce parts by Indirect Metal Laser Sintering (IMLS) method. The optimum process parameters such as energy density, Percentage composition of Titanium-PMMA and Scan Sintering are obtained by adopting the Taguchi method for getting the maximum density and minimum porosity. Experiments are planned by Taguchi’s Mix-L8 orthogonal array. According to the results obtained from this study, the percentage of combination Ti-PMMA and Energy density, respectively, are a major parameters that... 

    Kinetics of sulfur removal from tehran vehicular gasoline by g-C3N4/SnO2 nanocomposite

    , Article ACS Omega ; Volume 4, Issue 8 , 2019 , Pages 13180-13188 ; 24701343 (ISSN) Montazeri, S. M ; Sadrnezhaad, S. K ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    The graphitic carbon nitride/tin oxide (g-C3N4/SnO2) nanocomposite synthesized under microwave irradiation was used for adsorptive removal of sulfur-containing dibenzothiophene (DBT) from Tehran vehicular gasoline. High-resolution transmission electron microscopy, X-ray powder diffraction, energy dispersive X-ray spectroscopy, Brunauer-Emmett-Teller, Fourier-transform infrared spectroscopy, and field emission scanning electron microscopy techniques determined the adsorbent characteristics, and gas chromatography with a flame ionization detector determined the DBT concentration of the samples. Application of the experimental data into the solid/fluid kinetic models indicated a chemisorption... 

    Fuzzy logic computing for design of gas turbine engine fuel control system

    , Article 2010 The 2nd International Conference on Computer and Automation Engineering, ICCAE 2010, 26 February 2010 through 28 February 2010 ; Volume 5 , February , 2010 , Pages 723-727 ; 9781424455850 (ISBN) Montazeri Gh, M ; Yousefpour, H ; Jafari, S ; Sharif University of Technology
    2010
    Abstract
    This paper presents the fuzzy logic computing for the design and implementation of fuel controller for gas turbine engines. For this purpose, a fuzz controller is designed in order to be implemented on an electronic control unit where it is used to drive a servo operated fuel control valve. The fuzzy logic computing approach for different parts of the controller including fuzzification, rule base, inference engine and defuzzification are then described. Finally, computer simulation of the fuzzy controllers integrated with the engine model is performed to investigate the effectiveness of the proposed fuzzy controller on the performance of a turbojet engine. The results are provided to show... 

    MEG based classification of wrist movement

    , Article Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 ; 2009 , Pages 986-989 ; 1557170X (ISSN) ; 978-142443296-7 (ISBN) Montazeri, N ; Shamsollahi, M. B ; Hajipour, S ; Sharif University of Technology
    2009
    Abstract
    Neural activity is very important source for data mining and can be used as a control signal for brain-computer interfaces (BCIs). Particularly, Magnetic signals of neurons are enriched with information about the movement of different part of the body such as wrist movement. In this paper, we use MEG (Magneto encephalography) signals of two subjects recorded during wrist movement task in four directions. Data were prepared for BCI competition 2008 for multiclass classification. Our approach for this classification problem consists of PCA as a noise reduction method, ULDA for feature reduction and various linear classifiers such as Bayesian, KNN and SVM. Final results (58%-62% for subject 1... 

    Coupled Attitude-orbit Dynamics and Control of Solar Sail by Moving the Center of Mass

    , M.Sc. Thesis Sharif University of Technology Montazeri Hedesh, Hamidreza (Author) ; Asadian, Nima (Supervisor)
    Abstract
    In this thesis, firstly we have developed a coupled dynamic for the orbit and attitude of a solar sail. Secondly, we found an optimal trajectory from the Earth to Mars and tried to control the system on the optimal trajectory by a control mechanis which moves the center of mass of the sail. The solar sail is considered to be rigid and Ideally reflective which means the sail reflects the full extent of the photons it receives. Adjusting the center of mass of the sail is done by changing the position of two sliding masses rode on two rails perpendicular to each other. Moving the center of mass of the sail brings about a change in the attitude of the sail which then causes a deflection in the... 

    Synthesis and Application of Heterogeneous Catalysts in Oxidative C-O Coupling by Direct C-H Bond Activation of Formamides

    , M.Sc. Thesis Sharif University of Technology Montazeri, Pantea (Author) ; Matloubi Moghaddam, Firouz (Supervisor)
    Abstract
    The magnetic MOF-based catalytic system has been reported here to be an efficient catalyst for synthesis of carbamates under optimal conditions. The robust MOF catalyst was built based on magnetic nanoparticles and HKUST-1 which further modified with thioacetamide and carbonization. The catalyst structure was confirmed by various techniques. Furthermore, the products’ yields were obtained in good to excellent for all reactions under mild conditions which result from superior activity of the synthesized heterogeneous catalyst containing Cupper. Also, the magnetic property of the MOF-based catalyst makes it easy to separate from reaction mediums and reuse in the next runs. In summary, the... 

    A new modeling and control scheme for cascaded split-source converter cells

    , Article IEEE Transactions on Industrial Electronics ; Volume 69, Issue 8 , 2022 , Pages 7618-7628 ; 02780046 (ISSN) Montazeri, S. H ; Milimonfared, J ; Zolghadri, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Cascaded split-source inverter (CSSI) is a new single-stage modular multilevel topology. Each cell of this converter converts dc to ac power in the buck or boost operation mode without any additional power switch. This article develops a design method based on a detailed model for CSSI. This model shows that energy storage elements experience double-fundamental frequency ripples besides high-frequency ones. It accurately calculates voltage gains and capacitor voltage and inductor current ripples. On the other hand, common carrier-based multilevel modulations have been modified in terms of both reference and carrier signals to control the inverter under symmetric and asymmetric conditions....