Loading...
Search for: moosavi--nematollah
0.17 seconds

    A fast and accurate multi-cycle soft error rate estimation approach to resilient embedded systems design

    , Article Proceedings of the International Conference on Dependable Systems and Networks, 28 June 2010 through 1 July 2010 ; June , 2010 , Pages 131-140 ; 9781424475018 (ISBN) Fazeli, M ; Miremadi, S. G ; Asadi, H ; Nematollah Ahmadian, S ; Sharif University of Technology
    2010
    Abstract
    In this paper, we propose a very fast and accurate analytical approach to estimate the overall SER and to identify the most vulnerable gates,flip-flops, and paths of a circuit. Using such information, designers can selectively protect the vulnerable parts resulting in lower power and area overheads that are the most important factors in embedded systems. Unlike previous approaches, the proposed approach firstly does not rely on fault injection or fault simulation; secondly it measures the SER for multi cycles of circuit operation; thirdly, the proposed approach accurately computes all three masking factors, namely, logical, electrical, and timing masking; fourthly, the effects of error... 

    Numerical Investigation of Flow Oscillation in the Diffuser Inlet & Test Chamber of High-Altitude Simulator

    , M.Sc. Thesis Sharif University of Technology Zahedifar, Fatemeh (Author) ; Farahani, Mohammad (Supervisor) ; Fouladi, Nematollah (Supervisor)
    Abstract
    The present research was conducted to numerical simulation and phenomenology of the pressure fluctuations and instability of the diffuser with the ratio of the diffuser inlet to the nozzle outlet of 1.91. The numerical simulation has been done with k-ω-SST and k-ω-GEKO turbulence models with both steady and unsteady methods for the nozzle with an expansion ratio of 30. Validation of the numerical solution has been done with the help of the experimental test data of the high-altitude test simulator available in the Research Institute of Space Transportation Systems. Tests were conducted by cold gas. Investigations indicate that two types of start occur in the system, stable and unstable... 

    Design and Analysis of Hot Gas Diffuser for High Altitude Simulation

    , M.Sc. Thesis Sharif University of Technology Mirbabaei, Ahmad Reza (Author) ; Farahani, Mohammad (Supervisor) ; Fooladi, Nematollah (Co-Advisor)
    Abstract
    In order to test the performance of engines used at high altitudes, a vacuum simulator system is used. In the vacuum test stand the supersonic exhaust diffuser is used to create the vacuum conditions and the automatic discharge of combustion gases into the atmosphere. usually, the exhaust gas temperature of the engine nozzle is much higher than the temperature that steel body of diffuser can stand (above 2500 K). The purpose of this study is to design and analyze a cooling system to protect the diffusers body. In this study, first by comparing different cooling methods, a spray-cooled water treatment method has been selected for the problem. A new algorithm for designing a spray cooling... 

    Experimental Investigation of Pressure Oscillations Phenomenon in Test Chamber of High-Altitude Simulator

    , M.Sc. Thesis Sharif University of Technology Nojoumi, Amir Ali (Author) ; Farahani, Mohammad (Supervisor) ; Fouladi, Nematollah (Supervisor)
    Abstract
    Depending on the geometry and nozzle pressure, increasing the ratio of the diffuser inlet area to the nozzle outlet area can lead to instability in the high-altitude simulator vacuum chamber startup process. This instability results in the formation of harmonic pressure oscillations throughout the diffuser and the vacuum chamber. In this study, a scaled down second throat diffuser with compressed air has been utilized. The performance of the diffuser has been investigated using four conical nozzles with different expansion ratios to simulate instability at area ratios of 1.27, 1.91, 4.1, and 7.81 with rapid nozzle pressure rise. Experiments were conducted by measuring wall pressures along... 

    Coarsening dynamics of dewetting nanodroplets on chemically patterned substrates

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 86, Issue 1 , July , 2012 ; 15393755 (ISSN) Moosavi, A ; Sharif University of Technology
    2012
    Abstract
    Mesoscopic hydrodynamic equations are solved to investigate coarsening dynamics of two interacting nanodroplets on chemically patterned substrates. The effects of different parameters such as the surface chemical pattern, the slip length, the profile of the disjoining pressure, the size of the droplets, and the contact angles on the coarsening are studied. Our results reveal that the presence of a chemical heterogeneity can enhance or weaken the coarsening dynamics depending on the pattern type and positions of the droplets on the substrate. Also increasing the contact angles to values larger than a critical value may qualitatively change the coarsening process, and the profile of the... 

    Development of Compact Finite Difference Boltzmann Method for Simulating Compressible Rarefied Gas Flow

    , M.Sc. Thesis Sharif University of Technology Alemi Arani, Ali (Author) ; Hejranfar, Kazem (Supervisor) ; Fouladi, Nematollah (Co-Supervisor)
    Abstract
    In this work, a high-order accurate gas kinetic scheme based on the compact finite-difference Boltzmann method (CFDBM) is developed and applied for simulating the compressible rarefied gas flows. Here, the Shakhov model of the Boltzmann equation is considered and the spatial derivative term in the resulting equation is discretized by using the fourth-order compact finite-difference method and the time integration is performed by using the third-order TVD Runge-Kutta method. A filtering procedure with three discontinuity-detecting sensors is applied and examined for the stabilization of the solution method especially for the problems involving the discontinuity regions such as the shock. The... 

    Design and Analysis of an Optimal Cooling System for a Supersonic Exhaust Diffuser Using a Water Jacket

    , M.Sc. Thesis Sharif University of Technology Mahdian Dowlatabadi, Milad (Author) ; Farahani, Mohammad (Supervisor) ; Fouladi, Nematollah (Supervisor)
    Abstract
    Often in a vacuum test facility, a supersonic exhaust diffuser uses the energy of the outflow from the nozzle to create and maintain a vacuum condition in the engine test chamber. In this system, the temperature of the motor exhaust gas, which directly hits the diffuser walls, is much higher than the tolerance of the metal body of the diffuser. The purpose of this research is to design a cooling system for thermal protection of diffuser walls of a vacuum simulator using a water-jacket tool. At the beginning of this study, the effective parameters in the design of the water-jacket cooling system were identified. Then, a new algorithm to design and optimize the water-jacket cooling system was... 

    Investigation of the Starting Process of a Second Throat Exhaust Diffuser in a High-Altitude Test Stand

    , M.Sc. Thesis Sharif University of Technology Parsa Delivand, Ahmad Reza (Author) ; Farahani, Mohammad (Supervisor) ; Fouladi, Nematollah (Supervisor)
    Abstract
    In the present study, the effect of the diffuser inlet-to-nozzle exit area ratio (A_d/A_e ) on the gradual starting performance of a second throat exhaust diffuser has been investigated experimentally. Experiments have been carried out with four conical nozzles with different expansion ratios and considering two approaches of gradual increase and gradual decrease of nozzle chamber pressure by a high-pressure air tank. Investigations show that at high area ratios before starting the diffuser, oscillations in the pressure of the test chamber are created due to the instability of the flow at the diffuser inlet. By frequency analysis of the vacuum chamber pressure, it is observed that as A_d/A_e... 

    Dynamics of nanodroplets on wettability gradient surfaces

    , Article Journal of Physics Condensed Matter ; Volume 23, Issue 8 , February , 2011 ; 09538984 (ISSN) Moosavi, A ; Mohammadi, A ; Sharif University of Technology
    2011
    Abstract
    A lubrication model is used to study the dynamics of nanoscale droplets on wettability gradient surfaces. The effects of the gradient size, size of the nanodroplets and the slip on the dynamics have been studied. Our results indicate that the position of the center of mass of the droplets can be well described in terms of a third-order polynomial function of the time of the motion for all the cases considered. By increasing the size of the droplets the dynamics increases. It is also shown that the slip can considerably enhance the dynamics. The results have been compared with the results obtained using theoretical models and molecular dynamics simulations  

    Analytical and Numerical Study of Dynamics of Wettability Driven Droplets in Smooth And Corrugated Channels

    , M.Sc. Thesis Sharif University of Technology Esmaili, Ehsan (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    We studied dynamics of droplets inside channels under surface forces created by chemicalsteps on the channel walls. A multi-component Shan-Chen lattice Boltzmann method isused for this purpose.The effects of parameters such as the channel height, viscosity anddensity ratios on the results were investigated for homogeneous and grooved substrates. Alsoan analytical solution was developed for droplets under chemical heterogeneities in channels with smooth surfaces. The solution considers a general condition, namely, asymmetry of the contact angles on the top and bottom walls, the viscosity of the gas as the second fluid and the effect of the channel height. Then using Shan-Chen lattice... 

    Numerical Investigation of Motion of Droplets in Micro and Nanochannels

    , M.Sc. Thesis Sharif University of Technology Bedram, Ahmad (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    In this research, droplet motion in symmetric and asymmetric junctions in micro and nano scales was investigated. Droplets motion in symmetric and asymmetric junctions have many applications in many industries such as chemical and pharmacy. In this research symmetric T-junction in micro and nano sizes was simulated numerically in 2D and 3D formes. Also asymmetric T-junction (with unequal width branches) was simulated numerically in two cases, 2D and 3D. In the asymmetric T-junction, also an analyrical theory was developed. Numerical simulation was performed by using VOF techniqe and analytical theory was developed by thin film theory. For verifying the accuracy of numerical solution, grid... 

    Three Dimensional Simulation of Morphology of Nanodroplets Near and on Structured Substrates

    , M.Sc. Thesis Sharif University of Technology Vahid, Afshin (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    Mesoscopic hydrodynamic equations are solved employing a VOF based method to investigate the equilibrium shape of nanodroplets positioned over various topographic geometries of the supporting substrate for three-dimensional systems. By taking into account liquid-liquid and liquid-solid interactions a complex distribution for inter-molecular forces over the substrates (the disjoining pressure) is observed. In this research we show that motion of nanodroplets not only caused by contact angle difference in drplets two sides, but also depend on disjoining pressure parameters.Geometries with increasing complexities, from wedges to three dimensional edges and wedges, were explored with the main... 

    Numerical Investigation of Instabilities of Flow in Micro-fluid

    , M.Sc. Thesis Sharif University of Technology Yazdi, Hossein (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    This research concerns investigating the behavior of two-phase flow in the inlet and outlet of the microchannels.Both the droplet based and the continuous microfluidics are considered. For the continuous system whenthe minor fluid enters the microchannel, due to ratio of viscosity of two fluids, viscous folding occurs.Viscous folding phenomena is similar to the buckling phenomena in solids.This means that the viscosity of the fluid, which is applied to two sides of the fluid layer, causes folding the fluid layer and changing the shape of it. For the study we employ a VOF based numerical routine. In order to verify numerical results, the grid and the time step independenciesare checked. In... 

    Coarsening Dynamics of Nanodroplets

    , M.Sc. Thesis Sharif University of Technology Asgari, Mahdi (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    Hydrodynamic mesoscopic equations are solved using boundary integral method to investigate the coarsening dynamics of two dimensional nanodroplets. The dynamics is probed by locating two drops on homogeneous, chemical heterogeneous and physical heterogeneous substrates respectively. For homogeneous substrate, the effect of different parameters like droplets distance, slip boundary condition, surface contact angle and disjoining pressure type on the dynamics is studied. Results reveal that increasing the contact angles to values larger than a critical value may qualitatively change the coarsening process and the profile of the disjoining pressure can appreciably modify the coarsening rate.... 

    Numerical Investigation of Motion of Nanodroplets on Wetting Gradient Surfaces

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Ahmad (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    A droplet placed on the boundary of two solids with different wettabilities will move to the more wettable part. This is a well-known phenomenon and has been extensively used in a variety of processes and applications ranging from biological systems and ink jet printing to the commercial lab-on-a-chip. Because of its importance, many studies are conducted around this phenomenon. The difference between the equilibrium contact angles of the droplet on the two parts gives rise to an interfacial driving force which moves the droplet. Such a motion is not continuous as the droplet slides to the more wettable area, the driving force diminishes and consequently the droplet stops. A non-stop motion... 

    Investigation of Atrium Shape Influence on Natural Ventilation Performance & CFD Model

    , M.Sc. Thesis Sharif University of Technology Shafiee, Ali (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    In modern era, standpoints about atrium design have been revolutionized. In modern architecture, atrium not only designed for illuminating purposes but also designed by natural ventilation and passive cooling policies. Numerous parameters are making role in thermal efficiency of Atrium. A couple of these parameters are Atrium shape and openings area. In high rise atria the lower level rooms enjoy the advantage of buoyancy-driven ventilation while the upper level rooms suffer from its lack or weak presence. One strategy to solve this problem is designing building with various opening area in different heights but manipulating the opening size is restricted by some facts. Excessive Opening’s... 

    Analysis of Fuel Gas Distribution in Ethane Cracking Furnace

    , M.Sc. Thesis Sharif University of Technology Behrouzi, Zargham (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    Ethylene process is one of the most complex systems in petrochemical industries.The first section of the ethylene plant is the cracking furnace.The radiant section of predicted olefin furnaces is symmetrical with respect to a plane through the center line of the furnace and at an angle of 90° with the side walls. There are a total of 24 vertical radiant coils located centrally in the firebox wherein, bottom andside wall burners supply the heat necessary. Each four coils known as a ZONE so, as a result there are six zones, called zone A through F. Failures(rapture, creep, material degradation) rate on the coils decreases from zone A to zone F (A, B, C, D, E and F) respectively.From... 

    Investigation of the Influence of Geometry and External Field on Fluid Flow Through Carbon Nanotubes by Molecular Dynamics Simulation

    , M.Sc. Thesis Sharif University of Technology Khodabakhshi, Milad (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    Water transportation through carbon nanotubes is key for designing nanodevices. The directed transport of water molecules through a rotating charged carbon nanotube (CNT) is investigated by molecular dynamics simulations. It is found that the net flux of continuous unidirectional water flow depended sensitively on the charge distribution, charge density and rotation of the CNT. we find that for a constant charge density, the water flux increases with the increase of the charge difference. Besides, we find that the water flux shows a nonlinear dependence on the angular velocity of the rotation. The rotation of the CNT with low angular velocities, can not generate a continuous water flux. The... 

    Numerical Investigation of Nano-Particles Dispersion and Deposition in Crossing of Elliptical Obstacles Networkusing Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Piri, Salman (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    Investigation of transport and deposition of aerosol particles has been of interest to researchers in many branches of science. Various numerical and experimental methods has been utilized in particulate fluid flows studies. In recent relevant researches lattice Boltzmann method has been widely used and is reported to be a robust and efficient method. In present study, numerical investigation of dispersion and deposition of aerosol particles is studies in the channel, containing elliptical obstacles geometry using Lattice Boltzmann Method. Fluid flow simulations are performed using LBM while for the study of particle transport and deposition, tracking and the motion equations of them,... 

    Simulation of Drag Reduction Via Microgrooves

    , M.Sc. Thesis Sharif University of Technology Etemadi, Armin (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    Drag reduction on surfaces always has been a great case of study, especially in transport industry. This project discusses the external laminar flow of a single-phase fluid over a flat plate and the effects of making rectangular tiny grooves - in micron or millimeter - on them to reduce total drag. Making grooves with appropriate geometry on surfaces causes the fluid-solid contact area on the groove's surface turn into fluid-fluid and as a result the fluid will not shed into the groove. In other words the flow instead of having a no-slip boundary condition on inner surfaces of the groove, creates vortices in them that causes a remarkable reduction in velocity gradient followed by a skin...