Loading...
Search for:
moosavi--nematollah
0.418 seconds
Total 185 records
A fast and accurate multi-cycle soft error rate estimation approach to resilient embedded systems design
, Article Proceedings of the International Conference on Dependable Systems and Networks, 28 June 2010 through 1 July 2010 ; June , 2010 , Pages 131-140 ; 9781424475018 (ISBN) ; Miremadi, S. G ; Asadi, H ; Nematollah Ahmadian, S ; Sharif University of Technology
2010
Abstract
In this paper, we propose a very fast and accurate analytical approach to estimate the overall SER and to identify the most vulnerable gates,flip-flops, and paths of a circuit. Using such information, designers can selectively protect the vulnerable parts resulting in lower power and area overheads that are the most important factors in embedded systems. Unlike previous approaches, the proposed approach firstly does not rely on fault injection or fault simulation; secondly it measures the SER for multi cycles of circuit operation; thirdly, the proposed approach accurately computes all three masking factors, namely, logical, electrical, and timing masking; fourthly, the effects of error...
Design and Analysis of Hot Gas Diffuser for High Altitude Simulation
, M.Sc. Thesis Sharif University of Technology ; Farahani, Mohammad (Supervisor) ; Fooladi, Nematollah (Co-Advisor)
Abstract
In order to test the performance of engines used at high altitudes, a vacuum simulator system is used. In the vacuum test stand the supersonic exhaust diffuser is used to create the vacuum conditions and the automatic discharge of combustion gases into the atmosphere. usually, the exhaust gas temperature of the engine nozzle is much higher than the temperature that steel body of diffuser can stand (above 2500 K). The purpose of this study is to design and analyze a cooling system to protect the diffusers body. In this study, first by comparing different cooling methods, a spray-cooled water treatment method has been selected for the problem. A new algorithm for designing a spray cooling...
Experimental Investigation of Pressure Oscillations Phenomenon in Test Chamber of High-Altitude Simulator
, M.Sc. Thesis Sharif University of Technology ; Farahani, Mohammad (Supervisor) ; Fouladi, Nematollah (Supervisor)
Abstract
Depending on the geometry and nozzle pressure, increasing the ratio of the diffuser inlet area to the nozzle outlet area can lead to instability in the high-altitude simulator vacuum chamber startup process. This instability results in the formation of harmonic pressure oscillations throughout the diffuser and the vacuum chamber. In this study, a scaled down second throat diffuser with compressed air has been utilized. The performance of the diffuser has been investigated using four conical nozzles with different expansion ratios to simulate instability at area ratios of 1.27, 1.91, 4.1, and 7.81 with rapid nozzle pressure rise. Experiments were conducted by measuring wall pressures along...
Coarsening dynamics of dewetting nanodroplets on chemically patterned substrates
, Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 86, Issue 1 , July , 2012 ; 15393755 (ISSN) ; Sharif University of Technology
2012
Abstract
Mesoscopic hydrodynamic equations are solved to investigate coarsening dynamics of two interacting nanodroplets on chemically patterned substrates. The effects of different parameters such as the surface chemical pattern, the slip length, the profile of the disjoining pressure, the size of the droplets, and the contact angles on the coarsening are studied. Our results reveal that the presence of a chemical heterogeneity can enhance or weaken the coarsening dynamics depending on the pattern type and positions of the droplets on the substrate. Also increasing the contact angles to values larger than a critical value may qualitatively change the coarsening process, and the profile of the...
Development of Compact Finite Difference Boltzmann Method for Simulating Compressible Rarefied Gas Flow
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor) ; Fouladi, Nematollah (Co-Supervisor)
Abstract
In this work, a high-order accurate gas kinetic scheme based on the compact finite-difference Boltzmann method (CFDBM) is developed and applied for simulating the compressible rarefied gas flows. Here, the Shakhov model of the Boltzmann equation is considered and the spatial derivative term in the resulting equation is discretized by using the fourth-order compact finite-difference method and the time integration is performed by using the third-order TVD Runge-Kutta method. A filtering procedure with three discontinuity-detecting sensors is applied and examined for the stabilization of the solution method especially for the problems involving the discontinuity regions such as the shock. The...
Design and Analysis of an Optimal Cooling System for a Supersonic Exhaust Diffuser Using a Water Jacket
, M.Sc. Thesis Sharif University of Technology ; Farahani, Mohammad (Supervisor) ; Fouladi, Nematollah (Supervisor)
Abstract
Often in a vacuum test facility, a supersonic exhaust diffuser uses the energy of the outflow from the nozzle to create and maintain a vacuum condition in the engine test chamber. In this system, the temperature of the motor exhaust gas, which directly hits the diffuser walls, is much higher than the tolerance of the metal body of the diffuser. The purpose of this research is to design a cooling system for thermal protection of diffuser walls of a vacuum simulator using a water-jacket tool. At the beginning of this study, the effective parameters in the design of the water-jacket cooling system were identified. Then, a new algorithm to design and optimize the water-jacket cooling system was...
Investigation of the Starting Process of a Second Throat Exhaust Diffuser in a High-Altitude Test Stand
, M.Sc. Thesis Sharif University of Technology ; Farahani, Mohammad (Supervisor) ; Fouladi, Nematollah (Supervisor)
Abstract
In the present study, the effect of the diffuser inlet-to-nozzle exit area ratio (A_d/A_e ) on the gradual starting performance of a second throat exhaust diffuser has been investigated experimentally. Experiments have been carried out with four conical nozzles with different expansion ratios and considering two approaches of gradual increase and gradual decrease of nozzle chamber pressure by a high-pressure air tank. Investigations show that at high area ratios before starting the diffuser, oscillations in the pressure of the test chamber are created due to the instability of the flow at the diffuser inlet. By frequency analysis of the vacuum chamber pressure, it is observed that as A_d/A_e...
Simulation of Drag Reduction Via Microgrooves
, M.Sc. Thesis Sharif University of Technology ; Moosavi, Ali (Supervisor)
Abstract
Drag reduction on surfaces always has been a great case of study, especially in transport industry. This project discusses the external laminar flow of a single-phase fluid over a flat plate and the effects of making rectangular tiny grooves - in micron or millimeter - on them to reduce total drag. Making grooves with appropriate geometry on surfaces causes the fluid-solid contact area on the groove's surface turn into fluid-fluid and as a result the fluid will not shed into the groove. In other words the flow instead of having a no-slip boundary condition on inner surfaces of the groove, creates vortices in them that causes a remarkable reduction in velocity gradient followed by a skin...
Numerical Analysis of Underwater and Within Air Sound Generation by using Carbon Nanotube
, M.Sc. Thesis Sharif University of Technology ; Moosavi, Ali (Supervisor)
Abstract
Carbon nanotubes have special thermodynamic properties which makes suitable as a thermo-acoustic sound source. Recently it is shown that by using these nanotubes it is possible to generate strog sound waves in air or water. Experimental analysis of phenomenon can be complicated and expensive. Hence this fact, in this study using molecular dynamic simulation, numerical analysis of sound generation with CNTs in air and water is discussed. For this purpose, the required structue of the system is generated and it has reaced equilibrium. This process has been done for 6 different CNT and for each CNT there are 5 different distances between them. Althogether, 30 different cases has is used for...
Molecular Dynamic Simulation of Water Desalination Across Porous Single Layer Graphene Membrane
, M.Sc. Thesis Sharif University of Technology ; Moosavi, Ali (Supervisor)
Abstract
In recent years carbon nanotubes and other carbon nanostructures such as graphene sheets have attracted a lot of attention due to their unique mechanical, thermal and electrical properties. These structures can be used in desalination of sea water, removal of hazardous substances from water tanks, gases separation, and so on. The nano porous single layer graphene membranes are very efficient for desalinating water due to their very low thickness. In this study, the mechanism of passing water and salt ions through nano porous single-layer graphene membrane are simulated using classical molecular dynamics. In the simulation, in order to separate salt ions from the water, the effects of applied...
Investigation of Atrium Shape Influence on Natural Ventilation Performance & CFD Model
, M.Sc. Thesis Sharif University of Technology ; Moosavi, Ali (Supervisor)
Abstract
In modern era, standpoints about atrium design have been revolutionized. In modern architecture, atrium not only designed for illuminating purposes but also designed by natural ventilation and passive cooling policies. Numerous parameters are making role in thermal efficiency of Atrium. A couple of these parameters are Atrium shape and openings area. In high rise atria the lower level rooms enjoy the advantage of buoyancy-driven ventilation while the upper level rooms suffer from its lack or weak presence. One strategy to solve this problem is designing building with various opening area in different heights but manipulating the opening size is restricted by some facts. Excessive Opening’s...
Dynamics of nanodroplets on wettability gradient surfaces
, Article Journal of Physics Condensed Matter ; Volume 23, Issue 8 , February , 2011 ; 09538984 (ISSN) ; Mohammadi, A ; Sharif University of Technology
2011
Abstract
A lubrication model is used to study the dynamics of nanoscale droplets on wettability gradient surfaces. The effects of the gradient size, size of the nanodroplets and the slip on the dynamics have been studied. Our results indicate that the position of the center of mass of the droplets can be well described in terms of a third-order polynomial function of the time of the motion for all the cases considered. By increasing the size of the droplets the dynamics increases. It is also shown that the slip can considerably enhance the dynamics. The results have been compared with the results obtained using theoretical models and molecular dynamics simulations
Analysis of Fuel Gas Distribution in Ethane Cracking Furnace
, M.Sc. Thesis Sharif University of Technology ; Moosavi, Ali (Supervisor)
Abstract
Ethylene process is one of the most complex systems in petrochemical industries.The first section of the ethylene plant is the cracking furnace.The radiant section of predicted olefin furnaces is symmetrical with respect to a plane through the center line of the furnace and at an angle of 90° with the side walls. There are a total of 24 vertical radiant coils located centrally in the firebox wherein, bottom andside wall burners supply the heat necessary. Each four coils known as a ZONE so, as a result there are six zones, called zone A through F. Failures(rapture, creep, material degradation) rate on the coils decreases from zone A to zone F (A, B, C, D, E and F) respectively.From...
Phase Extraction in Segmented Flow
, M.Sc. Thesis Sharif University of Technology ; Moosavi, Ali (Supervisor)
Abstract
The formation of droplets at a T-junction in a micro channel network is primarily influenced by the pressure difference across the interface in the squeezing regime. Accurate measurements of droplet velocity and pressure profiles are difficult to obtain experimentally, yet these are the basic parameters required. Droplet micro fluidics has shown great potential for biological assays, chemical reactions and polymer emulsions. High stability allows the droplets to work as stable and isolated reactors that open up for parallel and serial reactions where each droplet can be screened individually. The purpose was to fabricate such systems, establish stable droplet generation where droplet volumes...
Investigation of the Influence of Geometry and External Field on Fluid Flow Through Carbon Nanotubes by Molecular Dynamics Simulation
, M.Sc. Thesis Sharif University of Technology ; Moosavi, Ali (Supervisor)
Abstract
Water transportation through carbon nanotubes is key for designing nanodevices. The directed transport of water molecules through a rotating charged carbon nanotube (CNT) is investigated by molecular dynamics simulations. It is found that the net flux of continuous unidirectional water flow depended sensitively on the charge distribution, charge density and rotation of the CNT. we find that for a constant charge density, the water flux increases with the increase of the charge difference. Besides, we find that the water flux shows a nonlinear dependence on the angular velocity of the rotation. The rotation of the CNT with low angular velocities, can not generate a continuous water flux. The...
Numerical Investigation on Oil/Water Separation through Coalescence in Membrane Pores
, M.Sc. Thesis Sharif University of Technology ; Moosavi, Ali (Supervisor)
Abstract
Oil/water separation is an important field, not only for scientific research, but also for environmental, economic, and social issues. On the one hand, oily wastewater, resulting from industries such as steel, aluminum, food, textile, leather, petrochemical and metal finishing, has become the most common pollutant all over the world. On the other hand, frequent oil spill accidents are of great concern since the discharge can lead not only to serious environmental pollution, but also a great loss of energy.
In crude oil removing water is necessary due to reducing corrosion, increasing thermal values of fuels obtained from crude oil, preventing catalists from destruction by water and...
In crude oil removing water is necessary due to reducing corrosion, increasing thermal values of fuels obtained from crude oil, preventing catalists from destruction by water and...
Numerical Investigation of Various Parameters Influence in Atrium Efficiency Improvements for Building’s Natural Ventilation
, M.Sc. Thesis Sharif University of Technology ; Moosavi, Ali (Supervisor)
Abstract
In order to improve the efficiency of atriums, effective parameters in ventilation and acceleration of airflow are numerous. Nevertheless, parameters such as shape and height of atrium, geometry of the inlet and outlets, opening areas and the presence of heat sources in each store play a vital role. In structures higher than one floor, there is no significant airflow in the upper floors and the ventilation of atrium is unpleasant for residents. Air movement in the building is done by buoyancy-driven force and hot air upward movement due to pressure differences.This study attempts to improve the natural ventilation performance with changing mentioned parameters. So for this purpose, 3D...
Investigation of Dropwise Condensation on Nanostructured Superhydrophobic Surfaces using Molecular Dynamics Simulation
, M.Sc. Thesis Sharif University of Technology ; Moosavi, Ali (Supervisor)
Abstract
Phase change processes have been used in heat transfer industries for decades. However, the heat transfer rate enhancement of the surfaces is still a challenging issue for the researchers. In this path, emerging nanostructured surfaces have shown great potentials. We demonstrate that using nanostructured surfaces in the condensation processes enhances the heat transfer behaviour of the fluid through interfacial contact area increase. In the present study molecular dynamics simulation have been employed to monitor the atomic behaviour of the system components at nanoscale. The argon liquid is considered as the working fluid and the copper surfaces as the phase change site. The effect of...
Drag Reduction Using Geometrically Structured Surfaces for Non-newtonian Multi-phase Fluids
, M.Sc. Thesis Sharif University of Technology ; Moosavi, Ali (Supervisor)
Abstract
With the advancement of the industry, microscale devices use due to its unique characteristics. On the other hand, it is essential to find ways to reduce drag inside microchannels because of The importance of energy. One of the methods is to optimize the contact surface using structured geometric surfaces. These hydrophobic surfaces reduce drag by trapping the air in roughness and creating a two-phase flow. The purpose of this project is to reduce the drag within the microchannel using structured geometric surfaces for non-Newtonian and multiphase flows. In most previous studies, with simplification, Newtonian and two-phase flows have been investigated. While most industrial fluids show...
Fabrication of Transparent, Superhydrophobic and Self-cleaning Coatings for Glass Substrate Using Nano-particles
, M.Sc. Thesis Sharif University of Technology ; moosavi, Ali (Supervisor)
Abstract
Although using solar energies have some limitations, such as low efficiency, require a large space and high starting cost, they are one of the most attractive source of energies. The reasons that cause efficiency of the solar panels decrease are contamination of dust particles on them and formation of water droplet on solar panel surface due to humidity of the air. Also, a solar panel can absorb only 25% of incident light and the others are reflected by the cover glass. Therefore, fabrication of a self-cleaning surface that can inhibit the aggregation of dust particles and also transparent that doesn’t reflect the incident light is crucial.In this work, we aim to obtain a transparent,...