Loading...
Search for:
mosayebi--r
0.116 seconds
Total 7462 records
Developing a 3D-DSMC Solver to Simulate Supersonic Rarefied Gas Flows over Micro/Nanosensors
, M.Sc. Thesis Sharif University of Technology ; Darbandi, Massoud (Supervisor)
Abstract
Use of micro/nanoelectromechanical systems has become increasingly prevalent in recent years. Therefore, the development of technologies and understanding of fundamental physics associated with them is necessary.In micro-and nano-scale different behavior is often observed and it is due to Knudsen number that forms different types of flow regimes. When the flow is considered to be continuum; for it is in the slip-flow regime, for it is called the transition-flow regime. When , the flow is considered to be free molecular and is sufficiently rarefied to allow molecular collisions to be completely neglected in analysis. For continuum and slip flow regime the Navier-Stokes equations with...
Cooperative abnormality detection via diffusive molecular communications
, Article IEEE Transactions on Nanobioscience ; Volume 16, Issue 8 , 2017 , Pages 828-842 ; 15361241 (ISSN) ; Jamali, V ; Ghoroghchian, N ; Schober, R ; Nasiri-Kenari, M ; Mehrabi, M ; Sharif University of Technology
2017
Abstract
In this paper, we consider abnormality detection via diffusive molecular communications (MCs) for a network consisting of several sensors and a fusion center (FC). If a sensor detects an abnormality, it injects a number of molecules into the medium which is proportional to its sensing output. Two transmission schemes for releasing molecules into the medium are considered. In the first scheme, each sensor releases a different type of molecule (DTM), whereas in the second scheme, all sensors release the same type of molecule (STM). The molecules released by the sensors propagate through the MC channel and some may reach the FC where the final decision regarding whether or not an abnormality...
Early cancer detection in blood vessels using mobile nanosensors
, Article IEEE Transactions on Nanobioscience ; Volume 18, Issue 2 , 2019 , Pages 103-116 ; 15361241 (ISSN) ; Ahmadzadeh, A ; Wicke, W ; Jamali, V ; Schober, R ; Nasiri Kenari, M ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2019
Abstract
In this paper, we propose using mobile nanosensors (MNSs) for early stage anomaly detection. For concreteness, we focus on the detection of cancer cells located in a particular region of a blood vessel. These cancer cells produce and emit special molecules, so-called biomarkers, which are symptomatic for the presence of anomaly, into the cardiovascular system. Detection of cancer biomarkers with conventional blood tests is difficult in the early stages of a cancer due to the very low concentration of the biomarkers in the samples taken. However, close to the cancer cells, the concentration of the cancer biomarkers is high. Hence, detection is possible if a sensor with the ability to detect...
Modelling of the effect of operational parameters and concentration of some corrosion inhibitors on the corrosion of carbon steel
, Article Anti-Corrosion Methods and Materials ; Volume 49, Issue 6 , 2002 , Pages 426-432 ; 00035599 (ISSN) ; Kazemeini, M ; Safekordi, A ; Badakhshan, A ; Sharif University of Technology
2002
Abstract
Several corrosion inhibitors, such as, HEDP, sodium molybdate and zinc ions, were added to an aqueous corrosive media containing different concentrations chloride ions, and the corrosion rates (CRs) of carbon steel were measured at various temperatures. It was shown that, in the presence of more than 1,200 ppm of chloride ions, and temperatures greater than or equal to 42.5°C, the combination of HEDP, molybdate and zinc could not control the corrosion in a cooling water system. Then four different models were designed to represent the CR of carbon steel in presence of various corrosive parameters
Type based sign modulation for molecular communication
, Article IWCIT 2016 - Iran Workshop on Communication and Information Theory, 3 May 2016 through 4 May 2016 ; 2016 ; 9781509019229 (ISBN) ; Gohari, A ; Mirmohseni, M ; Nasiri Kenari, M ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2016
Abstract
One of the foremost challenges in modulation scheme for molecular communication is positivity of the transmission signal (only a positive concentration of molecules can be released in the environment). This restriction makes handling of the InterSymbol Interference (ISI) a challenge for molecular communication. In this paper, a novel modulation is proposed which introduces use of negative signals to ameliorate the transmission link performance. A precoder scheme based on the diffusion channel model is proposed and shown to have a significant improvement compared to previous modulation schemes such as CSK and MCSK
Type-based sign modulation and its application for isi mitigation in molecular communication
, Article IEEE Transactions on Communications ; Volume 66, Issue 1 , 2018 , Pages 180-193 ; 00906778 (ISSN) ; Gohari, A ; Mirmohseni, M ; Nasiri Kenari, M ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2018
Abstract
While ISI is a common issue in classical communications, it is more challenging and prominent in the context of molecular communication, because one cannot readily combat ISI with classical channel equalization techniques. This is due to the fact that transmitter can only release a positive amount of concentration of a specific molecule into the medium. Previous works have proposed use of chemical reactions to remove molecules from the environment, and to effectively simulate negative signals. However, the differential equation describing a diffusion-reaction process is non-linear. This precludes the possibility of using Fourier transform tools. In this paper, a solution for simulating...
Investigation on the Effect of Improper Lubrication on the Performance of Rolling Element Bearings
, M.Sc. Thesis Sharif University of Technology ; Behzad, Mehdi (Supervisor) ; Hoviattalab, Maryam (Supervisor)
Abstract
In this project, the effect of improper lubrication on vibrational behavior of rolling element bearings is investigated. Different lubrication conditions were deliberately produced using three oils with different viscosity grades on a bearing at different loads and speeds. The acceleration of bearing vibrations were measured, then analyzed by means of squared envelope analysis, a special case of cyclostationary analysis. The results and their comparison showed that decrease in lubricant’s viscosity grade can lead to an increase in magnitude of cyclic frequencies equal to cage frequency and its harmonics. This observation can be helpful in detection of lubricant degradation and in...
Diffusion based molecular communication: A simple near optimal receiver
, Article IWCIT 2014 - Iran Workshop on Communication and Information Theory ; 7-8 May , 2014 ; Print ISBN: 9781479948789 ; Arjmandi, H ; Gohari, A ; Kenari, M. N ; Mitra, U ; Sharif University of Technology
2014
Abstract
Nanonetworking indicates new solutions for many applications in biomedical and industrial fields. In this paper, we examine the diffusion-based molecular communication for information transmission in nano-networks. Design of practical decoders for resource-limited nano-networks requires an understanding the fundamental performance limits of memory-limited decoders. While some existing works in the literature do consider decoders with limited memory, to best of our knowledge, the tradeoff between memory and probability of error has not been studied in the literature. In this paper we make a first step by studying this tradeoff for a particular molecular communication channel between two...
Receivers for diffusion-based molecular communication: Exploiting memory and sampling rate
, Article IEEE Journal on Selected Areas in Communications ; Vol. 32, issue. 12 , 2014 , pp. 2368-2380 ; ISSN: 07338716 ; Arjmandi, H ; Gohari, A ; Nasiri-Kenari, M ; Mitra, U ; Sharif University of Technology
2014
Abstract
In this paper, a diffusion-based molecular communication channel between two nano-machines is considered. The effect of the amount of memory on performance is characterized, and a simple memory-limited decoder is proposed; its performance is shown to be close to that of the best possible decoder (without any restrictions on the computational complexity or its functional form), using genie-aided upper bounds. This effect is adapted to the case of Molecular Concentration Shift Keying; it is shown that a four-bit memory achieves nearly the same performance as infinite memory for all of the examples considered. A general class of threshold decoders is considered and shown to be suboptimal for a...
DSMC simulation of heat transfer in subsonic rarefied gas flows through micro/nanochannels imposing a constant inflow/wall temperature difference
, Article 41st AIAA Fluid Dynamics Conference and Exhibit ; 2011 ; 9781600869471 (ISBN) ; Karchani, A ; Akhlaghi, H ; Mosayebi, G ; Schneider, G. E ; Sharif University of Technology
2011
Abstract
We use the direct simulation Monte Carlo (DSMC) method and investigate the subsonic rarefied gas flow through micro/nanochannels, imposing a constant pressure ratio and a constant temperature difference between the inflow and wall temperature. We further study the heat transfer characteristics of subsonic nitrogen gas flow under this imposed temperature difference. We show that, specifying a higher temperature magnitude would lead to more rarefactions even imposing a fixed temperature difference. This consequently results in a higher wall heat flux rate for a fixed inflow-wall temperature difference. Our investigating shows that the number of simulated particles need to increase suitably if...
Efficient Methods for Transmission and Reception of Information in Molecular Communication Systems
, M.Sc. Thesis Sharif University of Technology ; Nasiri-Kenari, Masoumeh (Supervisor) ; Gohari, Amin (Supervisor)
Abstract
This thesis studies on diffusion-based molecular communication channel between two nano-machines. The effect of the amount of memory on performance is characterized, and a simple memory-limited decoder is proposed and its performance is shown to be close to that of the best possible decoder (without any restrictions on the computational complexity or its functional form), using Genie-aided upper bounds. This effect is studied for the case of Molecular Concentration Shift Keying; it is shown that a four-bits memory achieves nearly the same performance as infinite memory. Then a general class of threshold decoders is considered and shown not to be optimal for a Poisson channel with memory,...
An experimental platform for macro-scale fluidic medium molecular communication
, Article IEEE Transactions on Molecular, Biological, and Multi-Scale Communications ; 2020 ; Nasiri Kenari, M ; Rouzegar, S. V ; Azizi, A ; Hosseinian, A ; Farahnak Ghazani, M ; Bagheri, N ; Mirmohseni, M ; Arjmandi, H ; Mosayebi, R ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2020
Abstract
The macro-scale molecular communication (MC) recently received considerable attention because of its potential applications. Since most of the experimental research in MC focuses on the micro-scale cases, it is necessary to study and implement experiments to investigate the concept’s feasibility as well as to validate the models and parameters. In this paper, a macro-scale flow-based MC platform with fluidic medium is developed, in a semi-cylindrical channel with laminar flow condition. The transmission medium we consider is water in the plexi pipe, a transmitter releases Hydrochloric acid molecules into this pipe and a chemical sensor is used as the receiver. We propose an LTI model for the...
Efficient Detection Schemes in Molecular Communication Networks
, Ph.D. Dissertation Sharif University of Technology ; Nasiri-Kenari, Masoumeh (Supervisor) ; Aminzadeh Gohari, Amin (Supervisor) ; Mirmohseni, Mahtab (Co-Supervisor)
Abstract
The progress in the design of nano-scale machines over the past decade has motivated researchers to study the concept of nano-communications. Inspired by biological systems,diffusion-based molecular communication (MC) systems have been proposed as a potential solution for communication in nano-networks where molecules are used as information carriers.Nano-networks are envisioned to facilitate revolutionary applications in areas such as biological engineering, healthcare, and environmental monitoring. In recent years, there has been a significant amount of work on various aspects of MC systems, including transmitter and receiver design, multiple access protocols, and network layer issues....
Network vulnerability analysis through vulnerability take-grant model (VTG)
, Article 7th International Conference on Information and Communications Security, ICICS 2005, Beijing, 10 December 2005 through 13 December 2005 ; Volume 3783 LNCS , 2005 , Pages 256-268 ; 03029743 (ISSN); 3540309349 (ISBN); 9783540309345 (ISBN) ; Sadoddin, R ; Jalili, R ; Zakeri, R ; Omidian, A. R ; Sharif University of Technology
2005
Abstract
Modeling and analysis of information system vulnerabilities helps us to predict possible attacks to networks using the network configuration and vulnerabilities information. As a fact, exploiting most of vulnerabilities result in access rights alteration. In this paper, we propose a new vulnerability analysis method based on the Take-Grant protection model. We extend the initial Take-Grant model to address the notion of vulnerabilities and introduce the vulnerabilities rewriting rules to specify how the protection state of the system can be changed by exploiting vulnerabilities. Our analysis is based on a bounded polynomial algorithm, which generates the closure of the Take-Grant graph...
Sequence dependence of the binding energy in chaperone-driven polymer translocation through a nanopore
, Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 83, Issue 1 , January , 2011 ; 15393755 (ISSN) ; Ejtehadi, M. R ; Metzler, R ; Sharif University of Technology
2011
Abstract
We study the translocation of stiff polymers through a nanopore, driven by the chemical-potential gradient exerted by binding proteins (chaperones) on the trans side of the pore. Bound chaperones prevent backsliding through the pore and, therefore, partially rectify the polymer passage. We show that the sequence of chain monomers with different binding affinity for the chaperones significantly affects the translocation dynamics. In particular, we investigate the effect of the nearest-neighbor adjacency probability of the two monomer types. Depending on the magnitude of the involved binding energies, the translocation speed may either increase or decrease with the adjacency probability. We...
First passage time distribution of chaperone driven polymer translocation through a nanopore: Homopolymer and heteropolymer cases
, Article Journal of Chemical Physics ; Volume 135, Issue 24 , 2011 ; 00219606 (ISSN) ; Metzler, R ; Ejtehadi, M. R ; Sharif University of Technology
2011
Abstract
Combining the advection-diffusion equation approach with Monte Carlo simulations we study chaperone driven polymer translocation of a stiff polymer through a nanopore. We demonstrate that the probability density function of first passage times across the pore depends solely on the Péclet number, a dimensionless parameter comparing drift strength and diffusivity. Moreover it is shown that the characteristic exponent in the power-law dependence of the translocation time on the chain length, a function of the chaperone-polymer binding energy, the chaperone concentration, and the chain length, is also effectively determined by the Péclet number. We investigate the effect of the chaperone size on...
Reply: Abedpour, asgari, and tabar
, Article Physical Review Letters ; Volume 106, Issue 20 , 2011 ; 00319007 (ISSN) ; Asgari, R ; Tabar, M. R. R ; Sharif University of Technology
2011
Irreversibility in response to forces acting on graphene sheets
, Article Physical Review Letters ; Volume 104, Issue 19 , May , 2010 ; 00319007 (ISSN) ; Asgari, R ; Tabar, M. R. R ; Sharif University of Technology
2010
Abstract
The amount of rippling in graphene sheets is related to the interactions with the substrate or with the suspending structure. Here, we report on an irreversibility in the response to forces that act on suspended graphene sheets. This may explain why one always observes a ripple structure on suspended graphene. We show that a compression-relaxation mechanism produces static ripples on graphene sheets and determine a peculiar temperature Tc, such that for T
Analysis of design goals of cryptography algorithms based on different components
, Article Indonesian Journal of Electrical Engineering and Computer Science ; Volume 23, Issue 1 , 2021 , Pages 540-548 ; 25024752 (ISSN) ; Aref, M. R ; Khorshiddoust, R. R ; Sharif University of Technology
Institute of Advanced Engineering and Science
2021
Abstract
Cryptography algorithms are a fundamental part of a cryptographic system that is designed and implemented to increase information security. They are the center of attention of experts in the information technology domains. Although the cryptography algorithms are implemented to attain the goals such as confidentially, integrity, and authenticity of designing, but other matters that must be noticed by designers include speed, resource consumption, reliability, flexibility, usage type, and so on. For the useful allocation of hardware, software, and human resources, it is important to identify the role of each of the factors influencing the design of cryptographic algorithms to invest in the...
Conservation of statistical results under the reduction of pair-contact interactions to solvation interactions
, Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 72, Issue 6 , 2005 ; 15393755 (ISSN) ; Farzami, R. R ; Ejtehadi, M. R ; Sharif University of Technology
2005
Abstract
We show that the hydrophobicity of sequences is the leading term in Miyazawa-Jernigan interactions. Being the source of additive (solvation) terms in pair-contact interactions, they were used to reduce the energy parameters while resulting in a clear vector manipulation of energy. The reduced (additive) potential performs considerably successful in predicting the statistical properties of arbitrary structures. The evaluated designabilities of the structures by both models are highly correlated. Suggesting geometrically nondegenerate vectors (structures) as proteinlike structures, the additive model is a powerful tool for protein design. Moreover, a crossing point in the log-linear diagram of...