Loading...
Search for: najafabadi--m--m
0.139 seconds

    Model predictive control of blood sugar in patients with type-1 diabetes

    , Article Optimal Control Applications and Methods ; Volume 37, Issue 4 , 2016 , Pages 559-573 ; 01432087 (ISSN) Abedini Najafabadi, H ; Shahrokhi, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2016
    Abstract
    In this article, two adaptive model predictive controllers (AMPC) are applied to regulate the blood glucose in type 1 diabetic patients. The first controller is constructed based on a linear model, while the second one is designed by using a nonlinear Hammerstein model. The adaptive version of these control schemes is considered to make them more robust against model mismatches and external disturbances. The least squares method with forgetting factor is used to update the model parameters. For simulation study, two well-known mathematical models namely, Puckett and Hovorka which describe the dynamical behavior of patient's body have been selected. The performances and robustness of the... 

    Anomalous single top quark production at the LHC

    , Article Physica Scripta ; Volume 82, Issue 3 , 2010 ; 00318949 (ISSN) Najafabadi, M. M ; Pooya, G ; Sharif University of Technology
    2010
    Abstract
    The anomalous top quark interactions with gluon (tug, tcg) allow the production of single top quarks at the Large Hadron Collider (LHC). Using the angular distribution of the charged lepton from the W boson in the top decay, we show that with the data of 10 fb-1 of integrated luminosity and in the collisions with the center of mass energy of 14TeV, the anomalous up and charm quarks coupling parameters κu,c/Λ can be measured down to 0.005 and 0.007 TeV-1, respectively  

    Single-channel high-transmission optical band-pass filter based on plasmonic nanocavities

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 37, Issue 8 , 1 August , 2020 , Pages 2329-2337 Najafabadi, M. M ; Vahidi, S ; Ghafoorifard, H ; Valizadeh, M ; Sharif University of Technology
    OSA - The Optical Society  2020
    Abstract
    This paper is concerned with the investigation of an optical band-pass filter based on subwavelength surface plasmon polaritons. The transmission characteristics are numerically analyzed by the finite-difference time-domain method, and simulation results reveal that the structure has a band-pass filtering characteristic. The metal–insulator–metal plasmonic nanostructure is implemented by several vertical rectangular cavities across an optical waveguide. The metal and dielectric materials utilized for the realization of the filter are silver and air, respectively. Furthermore, the performance can be efficiently modified by tuning the geometric parameters such as the cavities’ length and width... 

    System and method for analysis of involving factors in the demisting cyclone efficiency

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), San Diego, CA ; Volume 15 , November , 2013 ; 9780791856444 (ISBN) Najafabadi, M. M ; Ehteram, M. A ; Ahmadian, M. T ; Barari, A ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    In this study a system for real-time analysis of some involving factors in the efficiency of gas-liquid separators is developed based on the weighing method. An ultrasonic atomizer generates water drops in a size range of 1-10 μm with the same frequency during the test. A cyclone separator is selected and effect of the developing flow rate and shape of the mini-riser as a part of connecting assembly to the cyclone separator is investigated. Further an efficient electrostatic precipitator (ESP) with outcome of single-phase airflow is employed in the downstream of the cyclone to separate remaining droplets and produce the same pressure loss during the test. Circular, triangular, rectangular... 

    Optimized age dependent clustering algorithm for prognosis: A case study on gas turbines

    , Article Scientia Iranica ; Volume 28, Issue 3 B , 2021 , Pages 1245-1258 ; 10263098 (ISSN) Mahmoodian, A ; Durali, M ; Abbasian Najafabadi, T ; Saadat Foumani, M ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    This paper proposes an Age-Dependent Clustering (ADC) structure to be used for prognostics. To achieve this aim, a step-by-step methodology is introduced, that includes clustering, reproduction, mapping, and finally estimation of Remaining Useful Life (RUL). In the mapping step, a neural fitting tool is used. To clarify the age-based clustering concept, the main elements of the ADC model is discussed. A Genetic algorithm (GA) is used to find the elements of the optimal model. Lastly, the fuzzy technique is applied to modify the clustering. By investigating a case study on the health monitoring of some turbofan engines, the efficacy of the proposed method is demonstrated. The results showed... 

    Experimental study and thermodynamic modeling for determining the effect of non-polar solvent (hexane)/polar solvent (methanol) ratio and moisture content on the lipid extraction efficiency from Chlorella vulgaris

    , Article Bioresource Technology ; Volume 201 , 2016 , Pages 304-311 ; 09608524 (ISSN) Malekzadeh, M ; Abedini Najafabadi, H ; Hakim, M ; Feilizadeh, M ; Vossoughi, M ; Rashtchian, D ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this research, organic solvent composed of hexane and methanol was used for lipid extraction from dry and wet biomass of Chlorella vulgaris. The results indicated that lipid and fatty acid extraction yield was decreased by increasing the moisture content of biomass. However, the maximum extraction efficiency was attained by applying equivolume mixture of hexane and methanol for both dry and wet biomass. Thermodynamic modeling was employed to estimate the effect of hexane/methanol ratio and moisture content on fatty acid extraction yield. Hansen solubility parameter was used in adjusting the interaction parameters of the model, which led to decrease the number of tuning parameters from 6... 

    Estimation of biodiesel physical properties using local composition based models

    , Article Industrial and Engineering Chemistry Research ; Volume 51, Issue 41 , September , 2012 , Pages 13518-13526 ; 08885885 (ISSN) Abedini Najafabadi, H ; Pazuki, G ; Vossoughi, M ; Sharif University of Technology
    2012
    Abstract
    In this study, the local composition based models such as the Wilson, the nonrandom two-liquid (NRTL), and the Wilson-NRF have been applied in correlation and estimation of density, viscosity, and surface tension of biodiesels. The thermodynamic models have been used in correlating the thermophysical properties for 215 experimental data points. These models have the interaction energy between each pair that is considered as adjustable parameters. To decrease the number of these adjustable parameters, it is assumed that the biodiesels are composed of two hypothetical components. The average absolute deviation (AADs) of the correlated density of biodiesels for the Wilson, the NRTL, and the... 

    Performance analysis of contact baking of flat bread in an indirect-heating oven

    , Article Drying Technology ; Volume 30, Issue 9 , May , 2012 , Pages 1014-1023 ; 07373937 (ISSN) Karimi, G ; Feilizadeh, M ; Najafabadi, A. T ; Sharif University of Technology
    2012
    Abstract
    A significant portion of Iranian flat breads are produced in semi-industrial, indirect-heating ovens. Therefore, an efficient oven design and a proper selection of operating conditions are crucial to improve the product quality and reduce energy consumption. In the present study, a mathematical model is developed to simulate a semi-industrial, indirect-heating, continuous oven performance during contact baking of an Iranian flat bread, referred to as Taftoon. Individual modes of heat transfer are considered among various components of the baking system to estimate the system performance and the bread quality in terms of design and operating conditions. The predictions of this model are in... 

    The role of co-solvents in improving the direct transesterification of wet microalgal biomass under supercritical condition

    , Article Bioresource Technology ; Volume 193 , October , 2015 , Pages 90-96 ; 09608524 (ISSN) Abedini Najafabadi, H ; Vossoughi, M ; Pazuki, G ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In this research, direct conversion of wet algal biomass into biodiesel using supercritical methanol was studied. In this process, microalgal lipids simultaneously was extracted and converted to biodiesel under high pressure and temperature conditions without using any catalyst. Several experiments have been performed to optimize the methanol amount and it has been revealed that the best performance was achieved by using methanol/wet biomass ratio of 8:1. The effect of using various co-solvents in increasing the efficiency of the supercritical process was investigated. It has been shown that hexane was the most effective co-solvent and its optimal ratio respect to wet biomass was 6:1. The... 

    Experimental study and thermodynamic modeling for purification of extracted algal lipids using an organic/aqueous two-phase system

    , Article RSC Advances ; Volume 5, Issue 2 , 2015 , Pages 1153-1160 ; 20462069 (ISSN) Abedini Najafabadi, H ; Pazuki, G ; Vossoughi, M ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    The extraction and purification of lipids from the microalgae Chlorella vulgaris have been investigated. First, a mixture of hexane and ethanol was used to extract lipids from the algal biomass. Ultrasonication was employed to disrupt the cell wall and increase the extraction performance. Under these conditions, over 90% of the fatty acids in the biomass were extracted. Second, a biphasic system was formed by adding water and hexane to the extracted crude oil. In this way, fatty acids were mainly distributed in the organic phase (mostly hexane and ethanol) while most of the contaminants remained in the aqueous phase (mostly water and ethanol). Equilibrium distribution data between the phases... 

    Effect of various carbon sources on biomass and lipid production of Chlorella vulgaris during nutrient sufficient and nitrogen starvation conditions

    , Article Bioresource Technology ; Volume 180 , 2015 , Pages 311-317 ; 09608524 (ISSN) Abedini Najafabadi, H ; Malekzadeh, M ; Jalilian, F ; Vossoughi, M ; Pazuki, G ; Sharif University of Technology
    2015
    Abstract
    In this research, a two-stage process consisting of cultivation in nutrient rich and nitrogen starvation conditions was employed to enhance lipid production in Chlorella vulgaris algal biomass. The effect of supplying different organic and inorganic carbon sources on cultivation behavior was investigated. During nutrient sufficient condition (stage I), the highest biomass productivity of 0.158. ±. 0.011. g/L/d was achieved by using sodium bicarbonate followed by 0.130. ±. 0.013, 0.111. ±. 0.005 and 0.098. ±. 0.003. g/L/d for sodium acetate, carbon dioxide and molasses, respectively. Cultivation under nitrogen starvation process (stage II) indicated that the lipid and fatty acid content... 

    Controlling aspect ratio of colloidal silver nanorods using response surface methodology

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 393 , 2012 , Pages 46-52 ; 09277757 (ISSN) Hormozi Nezhad, M. R ; Jalali Heravi, M ; Robatjazi, H ; Ebrahimi Najafabadi, H ; Sharif University of Technology
    2012
    Abstract
    The properties of metallic nanorods vary due to changes in their composition, size and shape, which all depend on the aspect ratio of the nanorods. This work focuses on the optimization of the aspect ratio of silver nanorods using response surface methodology (RSM). Seed-mediated approach, which is the newest method with less difficulty, has been used for the synthesis of silver nanorods. First, silver ions were reduced with sodium borohydride in the presence of sodium citrate dehydrate, as stabilizer. Then, the prepared seeds were added to a solution containing more metal salts, a weak reducing agent (ascorbic acid) and a rod-like micellar template (cetyltrimethylammonium bromide, CTAB).... 

    Effect of thermal wave propagation on thermoelastic behavior of functionally graded materials in a slab symmetrically surface heated using analytical modeling

    , Article Composites Part B: Engineering ; Vol. 60 , 2014 , pp. 413-422 ; ISSN: 13598368 Molaei Najafabadi, M ; Ahmadian, M. T ; Taati, E ; Sharif University of Technology
    2014
    Abstract
    Design and development of FGMs as the heat treatable materials for high-temperature environments with thermal protection require understanding of exact temperature and thermal stress distribution in the transient state. This information is primary tool in the design and optimization of the devices for failure prevention. Frequently FGMs are used in many applications that presumably produce thermal energy transport via wave propagation. In this study, transient non-Fourier temperature and associated thermal stresses in a functionally graded slab symmetrically heated on both sides are determined. Hyperbolic heat conduction equation in terms of heat flux is used for obtaining temperature... 

    Size-dependent generalized thermoelasticity model for Timoshenko micro-beams based on strain gradient and non-Fourier heat conduction theories

    , Article Composite Structures ; Vol. 116, issue. 1 , July , 2014 , p. 595-611 Taati, E ; Molaei Najafabadi, M ; Reddy, J. N ; Sharif University of Technology
    2014
    Abstract
    The governing equations of coupled thermoelasticity of Timoshenko micro-beams are developed based on the generalized thermoelastic theory and non-Fourier heat conduction model. Such problems may arise in MEMS such as micro-pumps as well as micro-sensors. The present model is on the basis of non-classical continuum theory and non-Fourier heat conduction model which has capability of capturing the size-effect in micro-scaled structures. Governing equations and both classical and non-classical boundary conditions of motion are obtained using the variational approach. As the case study, the present model is utilized for the simply supported micro-beams subjected to a constant impulsive force per... 

    Size-dependent generalized thermoelasticity model for Timoshenko microbeams

    , Article Acta Mechanica ; Vol. 225, issue. 7 , 2014 , p. 1823-1842 Taati, E ; Molaei Najafabadi, M ; Basirat Tabrizi, H ; Sharif University of Technology
    2014
    Abstract
    A size-dependent, explicit formulation for coupled thermoelasticity addressing a Timoshenko microbeam is derived in this study. This novel model combines modified couple stresses and non-Fourier heat conduction to capture size effects in the microscale. To this purpose, a length-scale parameter as square root of the ratio of curvature modulus to shear modulus and a thermal relaxation time as the phase lag of heat flux vector are considered for predicting the thermomechanical behavior in a microscale device accurately. Governing equations and boundary conditions of motion are obtained simultaneously through variational formulation based on Hamilton's principle. As for case study, the model is... 

    Experimental design in analytical chemistry - Part II: Applications

    , Article Journal of AOAC International ; Vol. 97, issue. 1 , 2014 , p. 12-18 Ebrahimi-Najafabadi, H ; Leardi, R ; Jalali-Heravi, M ; Sharif University of Technology
    2014
    Abstract
    This paper reviews the applications of experimental design to optimize some analytical chemistry techniques such as extraction, chromatography separation, capillary electrophoresis, spectroscopy, and electroanalytical methods  

    Optimization of functionally graded materials in the slab symmetrically surface heated using transient analytical solution

    , Article Journal of Thermal Stresses ; Vol. 37, issue. 2 , February , 2014 , pp. 137-159 ; ISSN: 01495739 Najafabadi, M. M ; Taati, E ; Tabrizi, H. B ; Sharif University of Technology
    2014
    Abstract
    Functionally graded materials (FGMs) have been introduced to significantly reduce the temperature and thermal stresses on structures at severe thermal loading. Design and development of FGMs as the heat treatable and energy-absorbing materials for high-temperature and thermal protection systems requires understanding of exact temperature and thermal stress distribution, in order to optimize their resistance to failure. In this study, transient temperature and associated thermal stresses in a functionally graded slab symmetrically heated on both sides are determined by separation of the variables scheme. This method is applied to the heat conduction equation in terms of heat flux for... 

    Experimental design in analytical chemistry -Part I: Theory

    , Article Journal of AOAC International ; Vol. 97, issue. 1 , 2014 , pp. 3-11 ; ISSN: 10603271 Ebrahimi-Najafabadi, H ; Leardi, R ; Jalali-Heravi, M ; Sharif University of Technology
    2014
    Abstract
    This paper reviews the main concepts of experimental design applicable to the optimization of analytical chemistry techniques. The critical steps and tools for screening, including Plackett-Burman, factorial and fractional factorial designs, and response surface methodology such as central composite, Box-Behnken, and Doehlert designs, are discussed. Some useful routines are also presented for performing the procedures  

    Multivariate curve resolution-particle swarm optimization: A high-throughput approach to exploit pure information from multi-component hyphenated chromatographic signals

    , Article Analytica Chimica Acta ; Volume 772 , 2013 , Pages 16-25 ; 00032670 (ISSN) Parastar, H ; Ebrahimi Najafabadi, H ; Jalali Heravi, M ; Sharif University of Technology
    2013
    Abstract
    Multivariate curve resolution-particle swarm optimization (MCR-PSO) algorithm is proposed to exploit pure chromatographic and spectroscopic information from multi-component hyphenated chromatographic signals. This new MCR method is based on rotation of mathematically unique PCA solutions into the chemically meaningful MCR solutions. To obtain a proper rotation matrix, an objective function based on non-fulfillment of constraints is defined and is optimized using particle swarm optimization (PSO) algorithm. Initial values of rotation matrix are calculated using local rank analysis and heuristic evolving latent projection (HELP) method. The ability of MCR-PSO in resolving the chromatographic... 

    Evaluation of prepared natural polymers in the extraction of chlorobenzenes from environmental samples: sol–gel–based cellulose acetate-phenyltriethoxysilane fibers

    , Article Microchemical Journal ; Volume 142 , 2018 , Pages 265-272 ; 0026265X (ISSN) Bagheri, H ; Golzari Aqda, T ; Enteshari Najafabadi, M ; Sharif University of Technology
    2018
    Abstract
    In this research, three fibers including cellulose acetate (CA), CA–phenyltriethoxysilane (PTES) prepared via sol–gel electrospinning and sol–gel–based CA fibers immersed in PTES solution (dipped–CA–PTES) were prepared. The composition and morphology of the prepared fibers were evaluated by energy dispersive X-ray spectroscopy and field emission scanning electron microscopy. The prepared fibers were implemented in a home–made needle trap device, followed by thermal desorption of the selected chlorobenzenes (CBs) to a gas chromatography–flame ionization detector. Finally, parameters affecting the extraction methodology such as the amount of sorbent, extraction time and temperature, desorption...