Loading...
Search for:
naseri--alireza
0.123 seconds
Total 653 records
Line Simplifcation Using the Hausdorff Distance as Error Metric
, M.Sc. Thesis Sharif University of Technology ; Zarei, Alireza (Supervisor)
Abstract
Due to recent advancements and wide usage of location detection devices, huge amount of data are collected by GPS and cellular technologies which exhibits moving objects trajectories. Using this information, it is possible to track a set of objects over a long period of time, as happens for instance in studying animal migration. Always, in these situations it is undesirable or even impossible (due to process and storage limits) to store the complete stream of positioning data. Then, simplifying a trajectory as a data reduction technique is the option for resolving such problems. Moreover, there is an increasing interest in queries capturing ”aggregate” behavior of trajectories as groups like...
Fabrication and Investigation of Co3O4 Sponged Shape Nanostructured Supercapacitor Layer Electrodes Modified by Graphene
, Ph.D. Dissertation Sharif University of Technology ; Moshegh, Alireza (Supervisor) ; Naseri, Naima (Supervisor)
Abstract
Recently, Supercapacitors, as one of the most important energy storage devices, have attracted attensions by the scientists. Supercapcitor devices with appoporate design can store energy by two different mechanisms: i) physical (like conventional capacitors, i.e. by using polarization of the electrolyte, and ii) formation of electric double layer) and chemical mechanisms (like batteries, with reversible faradic reactions). These energy storage mechanisms allow these devices not only store high energy density but also they can provide high power density. In this project, two Co3O4/Co(OH)2 and Co3O4@Sponge-like rGO electrodes are made with chemical and electrochemical methods. To characterize...
Synthesis, Characterization and Photoelectrochemical Application of ZnO Nanorods Sensitized by Graphene
, M.Sc. Thesis Sharif University of Technology ; Moshfegh, Alireza (Supervisor) ; Naseri, Naeimeh (Co-Supervisor)
Abstract
According to the growth in the world population and the decrease in fossil fuels resources and also according to the pollution caused by these unrenewable resources, using hydrogen as an alternative energy resource seems to be unavoidable. In the past decades, semi-conductor metal oxides were being used widely in the energy domain of study, due to their appropriate band gap in the ultra-violet and visible spectra. Among these metal oxides, ZnO has been under special attention because of its electron mobility and its reasonable production cost and also its friendliness to environment. But the high band gap of ZnO (3.2 eV) has impeded its use in visible light spectrum. In this project,...
The Morphological Effects of Surface Modified Mos2 Nanosheets and Mos2 Qd/G-C3n4 Heterostructure Prepared by Chemical Methods in Hydrogen Evolution Reaction (Her)
, Ph.D. Dissertation Sharif University of Technology ; Moshfegh, Alireza (Supervisor) ; Naseri, Naeimeh (Co-Supervisor)
Abstract
The sustainable development in societies and the global energy challenge requires usage of clean energy systems that have attracted the attention of many researchers in recent decades. One of the major challenges in generating renewable resources is the problem of energy storage and imbalance between supply and demand cycles. Hydrogen as one of the clean energy carriers and due to having the highest energy density in terms of weight, is one of the important research topics. From this point of view, the preparation of electrocatalysts for hydrogen production, based on available materials, via simple and environmentally friendly production methods, was considered in this research....
Kinetics and Mechanism of the Reduction of Hexavalent Chromium to Less Toxic Materials on ZnO Nanostructured Surfaces: the Effect of Wavelength and Light Intensity on the Reaction Rate
, M.Sc. Thesis Sharif University of Technology ; Moshfegh, Alireza (Supervisor) ; Naseri, Ameneh (Supervisor)
Abstract
Hexavalent chromium ion (Cr+6) is a very toxic type of heavy metal in industrial effluents which is not biodegradable and accumulates in the human body that can cause genetic mutations and cancer. The aim of this project is to investigate the effect of wavelength and intensity of appropriate light on the reaction rate of photocatalytic reduction of Cr+6 ion to less toxic materials. In this project, we first designed and constructed a photocatalytic reactor to investigate the effect of wavelength and intensity of incident light on the reaction rate. The home-made photocatalytic reactor consisted of 120 LEDs in 12 different wavelengths, which has ability to control the intensity and...
Design and Fabrication of Core-Shell Electrodes Based on Nickel-Cobalt Layered Double Hydroxides for Energy Production Systems
, M.Sc. Thesis Sharif University of Technology ; Moshfegh, Alireza (Supervisor) ; Naseri, Naimeh (Supervisor)
Abstract
Due to the increasing demand for clean energy, layered double hydroxides (LDHs) have gained attention as electrocatalytic materials for water splitting into hydrogen and oxygen. Nickel-cobalt-based LDHs are favored for their ease of production and environmental compatibility, but they face challenges such as a lack of active sites and structural instability. The use of a core-shell structure can enhance the specific surface area and electroactive sites while preventing structural degradation. Furthermore, this structure can improve electrochemical performance and facilitate the oxygen evolution reaction (OER). In this research, a core-shell structure based on nickel-cobalt was developed,...
Study of Antibacterial Performance of Metal Oxide Nanostructures and their Effect on Bacterial Growth Kinetics
, M.Sc. Thesis Sharif University of Technology ; Naseri, Naimeh (Supervisor) ; Zaker Moshfegh, Alireza (Co-Supervisor)
Abstract
Fighting contagious microbial diseases is considered a serious health issue, which has attracted much attention in worldwide. Thus, development of new materials based on nanostructures as a new generation of antibiotics to address this challenge has been of interest to researchers in recent years. Nanostructures based on metallic oxide semiconductors such as oxides with light absorption, production of electron-hole pairs in needle like structures cause tearing bacterial membrane and eventually destroy the bacterium. To this end, we designed experiments to study mechanism and physics governing the process of bacterial degradation to determine the best conditions for inhibiting bacteria...
Synthesis, Characterization, and Enhanced Optical/Electronic Properties of g-C3N4 Nanosheets for Water Remediation
, Ph.D. Dissertation Sharif University of Technology ; Moshfegh, Alireza (Supervisor) ; Asgari, Reza (Supervisor) ; Naseri, Naimeh (Co-Supervisor)
Abstract
A global concern has arisen owing to rapid industrial development and population growth, resulting in energy scarcity and earth pollution. In this regard, developing green and sustainable methods for producing clean energy and solving environmental pollution problems have absorbed enormous attention. Among various auspicious strategies, semiconductor photocatalysis has been widely studied in recent years owing to its capabilities to obtain hydrogen as an energy carrier, to remove organic pollutants, and to reduce CO2 emission by converting solar energy into chemical energy. Recently, a metal-free semiconductor photocatalyst based on graphitic carbon nitride, g-C3N4, has received much...
Design and Optimization of Solar Hydrogen Production System Based on Photoelectrochemical Cell Model
, M.Sc. Thesis Sharif University of Technology ; Ghahnavieh, Rajabi (Supervisor) ; Moshfegh, Alireza (Supervisor) ; Naseri, Naimeh (Co-Supervisor)
Abstract
The optimized geometry and structure of iron oxide(Fe2O3) nanorod arrays as the photoanodes of photoelectrochemical cells have been calculated. Using finite element method, different structures have been studied in order to maximize the photocurrent density generated by the photoanodes. Two main characteristics of nanorod arrays namely the aspect ratio of nanorod and the density of nanorods in array have been selected as the variables. The absorbance of the photoanode has been calculated using Electromagnetic Waves Physics in COMSOL Multiphysics software. In this study, nanorods with aspect ratio of 3.6 to 40 have been varied and compared. The results reveal that the current density has a...
Design & Synthesis of ZnO-based Composite Nanofiber Photocatalysts with Z-Scheme Structure for Degradation of Organic Pollutants
, Ph.D. Dissertation Sharif University of Technology ; Moshfegh, Alireza (Supervisor) ; Pourjavadi, Ali (Supervisor) ; Mahmoodi, Niaz Mohammad (Co-Supervisor)
Abstract
The aim of conducting this research is to study, fabrication and photocatalytic application of electrospun ZnO-based composite nanofibers. One of the most important challenges is to apply photocatalyst under solar irradiation and improve its activity for pollutant degradation. ZnO is a wide band gap semiconductor, hence, it is not active under the visible light. In Iran, we have at least 300 sunny days in a year. Therefore, fabrication and application of photocatalytic material with activity under the sunlight which contains 47% of visible light is so vital in our country. Since CuO is a visible light active photocatalyst and its interface with ZnO forms a type I heterojunction, this...
Photoresponse enhancing in nanostructured WO3films by slight change in heating ambient
, Article Journal of Alloys and Compounds ; Volume 693 , 2017 , Pages 871-875 ; 09258388 (ISSN) ; Sharif University of Technology
Elsevier Ltd
2017
Abstract
Providing solar hydrogen as a clean energy resource is one of the human challenges for future. Controlling oxygen vacancies as well as surface morphology in metal oxide semiconductors enables developing PEC H2production in some understood ways. Here, the influence of simple change in annealing atmosphere, air and pure oxygen, on photoresponse of nanocrystalline WO3has been studied completely. Results revealed that such slight change in annealing procedure increases effective surface interface and donor density by 77 and 72%, respectively. These effects and also retarding recombination of photogenerated electro-hole pair resulted in photocurrent enhancement under solar like illumination more...
Performance Management of HSE Management System based on BSC Framework-the Case Study of Mapna Corporation
, M.Sc. Thesis Sharif University of Technology ; Sepehri, Mehran (Supervisor)
Abstract
A Balanced Scorecard (BSC) model is proposed to evaluate performance of Health, Safety and Environment (HSE) management systems. This model includes key performance indicators at three integrated levels. It has been tested and verified in a project-based organization in Iran, active in the area of power and energy. Results show that the company has done well in implementing HSE management processes, but no so well in growth and learning. This model may be used as a basis for comparing different companies and various proposed programs in the field of HSE management systems. The model includes indicators and sub-indicators in each category particularly related to stakeholders, processes, and...
Kinetic Modeling of Hydrocracking of Synthetic Wax from Fischer-Tropsch
, M.Sc. Thesis Sharif University of Technology ; Khorasheh, Farhad (Supervisor)
Abstract
Fischer-Tropsch process (FT ) is one of the most important processes gas-to-liquid (GTL) conversion. This process converts synthesis gas into hydrocarbons. Depending on the catalyst and operating conditions of the process, heavy paraffins (Wax) are the most important products in this process. These products can be used to heavy paraffin catalyst hydrocracking in a process for the production of diesel fuel and gasoline to lighter products are suitable to be converted. The aim of this project is to develop a suitable kinetic model to describe the process of producing heavy paraffin hydrocracking process Fisher - Tropsch to be lighter products. In this regard, each 5 continuous mass model...
Modeling of the Biomechanical Properties of Articular Cartilage
, M.Sc. Thesis Sharif University of Technology ; Firoozbakhsh, Keikhosrow (Supervisor)
Abstract
Articular cartilage Function is vital to joint tasks and its motion. The main biomechanical tasks of articular cartilage are a) the distribution of loads occurred in joints; b) providing joints with frictionless surface. The particular mechanical properties of articular cartilage make it possible for the Cartilage tissue to do its duty successfully. The biological factor that causes articular cartilage to damage is still unknown. It is believed that mechanical factors are the main reason for the cartilage destruction in osteoarthritis. Factors like age, heavy exercises and impact can begin tissue destructions and result in change in mechanical properties. To study the process of the...
Optimizing Co Nanoflakes Growth Parameters and Modifying Their Electro-catalytic Performance Using Carbon Nanostructures for Water Oxidation Reaction
, M.Sc. Thesis Sharif University of Technology ; Naseri, Naimeh (Supervisor)
Abstract
Ease of solar hydrogen production using water splitting and its environmental benefits, distinct hydrogen from other energy carriers. Hydrogen is the most abundant material in the world that make up more than 90% of the world compounds. So applying this material as a clean fuel is the best way to prevent environmental problems caused by fossil fuels. For efficient hydrogen production from water, a suitable electrocatalyst with low overpotential, high mechanical strength and reasonable catalytic activity must be utilized. In this research, cobalt based electrocatalyst was used considering that electrodepositon conditions play an important role in its final efficiency. On the other hand,...
Synthesis, Characterization and Optical Study of a New Heterobinuclear Bis(Cyclometalated) Complex Containing Pt(II) and Au(I)
, M.Sc. Thesis Sharif University of Technology ; Jamali, Sirous (Supervisor)
Abstract
The bis-cyclometalated platinum(II) complexes [Pt(ptpy)2], 3, and [Pt(fppy)2], 4, in which, ptpy = 2-(p-tolyl)pyridine and fppy = 2-(2,4-difluorophenyl)pyridine have been prepared. The reaction of 3 with one equiv [Au(PPh3)]+ (prepared from the reaction between AuCl(PPh3) and AgOTf) gave the heterobinuclear complex [Pt(ptpy)2Au(PPh3)].OTf, 5, by formation of a Pt→Au dative bond. The structure of all complexes were characterized using multinuclear NMR spectroscopy in solution phase and the structures of 4 and 5 determined using X-ray crystallography in solid state. The structure of heterobinuclear complex 5 shows an unusual Pt-Au bond that supported by Au-Cipso bond. The absorption and...
Evaluation and Optimization of Physical Properties of Graphene Oxide Nano Flakes to Confront Antibiotic Resistant Bacteria
, M.Sc. Thesis Sharif University of Technology ; Naseri, Naimeh (Supervisor)
Abstract
Antibacterial resistance towards existing antibiotics has become a major problem in medicine and health in recent years. Therefor it has become a challenge for scientists in different fields to find new antibiotics. Graphene and its derivatives, specially Graphene Oxide has gained attention in this area due to their unique physical properties. Graphene Oxide is considered to be a promising 2D nanomaterial for biomedical applications, due to its ease of production, stability in water, unique chemical and mechanical properties and its biocompatibility compared to other nanomaterials. In this study, graphene Oxide was synthesized using modified Hummers’ method. In order to investigate the...
Modifying Hole Transport in Branched hematite Nanostructures for Photoelectrochemical Water Splitting
, M.Sc. Thesis Sharif University of Technology ; Naseri, Naimeh (Supervisor)
Abstract
Regarding increasing world population, air pollution and depletion of fossil fuels supplies, hydrogen production via photoelectrochemical water splitting is a promising approach for providing a clean and renewable source of energy. Hematite (α-Fe2O3), the most common natural form of iron oxide, with a suitable band gap, high stability, earth-abundant nature and low cost has been widely acknowledged as a photoanode. However, intrinsic drawbacks of hematite like low electrical conductivity, short hole diffusion length and high recombination rate of electron-hole pairs hinder its photoelectrochemical performance with high efficiency. In this research, hematite nanostructures were synthesized...
Studying Graphene Oxide Nanoflakes Size Effect on Antibiotic Resistant Bacteria
, M.Sc. Thesis Sharif University of Technology ; Naseri, Naimeh (Supervisor)
Abstract
Two-dimensional (2D) nanomaterials are ultrathin nanomaterials with a high degree of anisotropy and chemical functionality. Research on 2D nanomaterials is still in its infancy, with the majority of research focusing on elucidating unique material characteristics and few reports focusing on biomedical applications of 2D nanomaterials. Here we report the properties and application of 2Dnanomaterials in field of bio technology while used main material in our project is graphene oxide for investigating its antibacterial properties. Because the properties of graphene oxide (GO)-based materials strongly depend on the lateral size and size distribution of GO nanosheets; therefore, GO and its...
Measure for Macroscopic Quantumness via Quantum Coherence and Macroscopic Distinction
, M.Sc. Thesis Sharif University of Technology ; Raeisi, Sadegh (Supervisor)
Abstract
One of the most elusive problems in quantum mechanics is the transition between classical and quantum physics. This problem can be traced back to the Schrodinger's cat. A key element that lies at the center of this problem is the lack of a clear understanding and characterization of macroscopic quantum states. Our understanding of Macroscopic Quantumness relies on states such as the Greenberger-Horne-Zeilinger(GHZ) or the NOON state. Here we take a first principle approach to this problem. We start from coherence as the key quantity that captures the notion of quantumness and demand the quantumness to be collective and macroscopic. To this end, we introduce macroscopic coherence which is the...