Loading...
Search for: nasiri-amini--a
0.155 seconds

    Noninvasive estimation of tissue temperature via high-resolution spectral analysis techniques

    , Article IEEE Transactions on Biomedical Engineering ; Volume 52, Issue 2 , 2005 , Pages 221-228 ; 00189294 (ISSN) Nasiri Amini, A ; Ebbini, E. S ; Georgiou, T. T ; Sharif University of Technology
    2005
    Abstract
    We address the noninvasive temperature estimation from pulse-echo radio frequency signals from standard diagnostic ultrasound imaging equipment. In particular, we investigate the use of a high-resolution spectral estimation method for tracking frequency shifts at two or more harmonic frequencies associated with temperature change. The new approach, employing generalized second-order statistics, is shown to produce superior frequency shift estimates when compared to conventional high-resolution spectral estimation methods Seip and Ebbini (1995). Furthermore, temperature estimates from the new algorithm are compared with results from the more commonly used echo shift method described in Simon... 

    Dextran-graft-poly(hydroxyethyl methacrylate) gels: A new biosorbent for fluoride removal of water

    , Article Designed Monomers and Polymers ; Volume 16, Issue 2 , 2013 , Pages 127-136 ; 1385772X (ISSN) Ahmari, A ; Mousavi, S. A ; Amini Fazl, A ; Amini Fazl, M. S ; Ahmari, R ; Sharif University of Technology
    2013
    Abstract
    Synthesis of dextran-graft-poly(hydroxyethyl methacrylate) gels as a new fluoride biosorbent was considered in this work. For this propose, the Taguchi experimental design method was used for optimizing the synthetic conditions of the gels to reach high level of fluoride absorbency. The effects of three main parameters including concentrations of monomer (hydroxyethyl methacrylate), crosslinking agent (ethylene glycol dimethacrylate), and initiator (ammonium persulfate) on the final properties of the prepared gels were investigated. The proposed mechanism for grafting and chemically crosslinking reactions was proved with equilibrium water absorption, Fourier-transformed infrared, scanning... 

    Existence and continuity of differential entropy for a class of distributions

    , Article IEEE Communications Letters ; Volume 21, Issue 7 , 2017 , Pages 1469-1472 ; 10897798 (ISSN) Ghourchian, H ; Gohari, A ; Amini, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    In this letter, we identify a class of absolutely continuous probability distributions, and show that the differential entropy is uniformly convergent over this space under the metric of total variation distance. One of the advantages of this class is that the requirements could be readily verified for a given distribution. © 1997-2012 IEEE  

    Analytical Modelling and Optimization of Disk Type, Slot Less Resolver

    , M.Sc. Thesis Sharif University of Technology Moheyseni, Atefeh (Author) ; Nasiri Gheidari, Zahra (Supervisor)
    Abstract
    Resolvers, due to their robust structure, are widely used in automation systems. Among the types of resolvers, the accuracy of the Wound Rotor (WR) resolver in the occurrence of common mechanical errors is higher than other types of resolvers. therefore, in this thesis, an AFWRR is studied to improve the performance. Increasing the number of poles in WR resolvers is a good solution for increasing the accuracy of these electromagnetic position sensors. However, high-speed WR resolvers due to employing fractional slot windings suffer from rich sub-harmonics in the induced voltages. A common solution for suppressing the undesirable sub-harmonics is using multi-layer winding with appropriate... 

    Effects of crystal orientation on the tensile and shear deformation of nickel-silicon interfaces: A molecular dynamics simulation

    , Article Materials Science and Engineering A ; Volume 543 , 2012 , Pages 217-223 ; 09215093 (ISSN) Amini, H ; Simchi, A ; Kokabi, A. H ; Sharif University of Technology
    2012
    Abstract
    Atomistic simulation was used to study the deformation and fracture mechanisms of Ni-Si interfaces under tensile and shear loads dependent on the crystal structure of interface zone. Modified embedded atom method (MEAM) potential was utilized for molecular dynamics (MD) modeling. The simulation includes analysis of common neighbors, coordination number, least-square atomic local strain, and radial distribution function. The profound effect of interface crystallography on the tensile and shear deformation is shown. The highest tensile strength is obtained for interfaces with high plane density due to lowest atomic disorder while under shear loading planes with low density exhibit a high local... 

    Approximateml estimator for compensation of timing mismatch and jitter noise in Ti-ADCS

    , Article European Signal Processing Conference, 28 August 2016 through 2 September 2016 ; Volume 2016-November , 2016 , Pages 2360-2364 ; 22195491 (ISSN) ; 9780992862657 (ISBN) Araghi, H ; Akhaee, M. A ; Amini, A ; Sharif University of Technology
    European Signal Processing Conference, EUSIPCO  2016
    Abstract
    Time-interleaved analog to digital converters (TI-ADC) offer high sampling rates by passing the input signal through C parallel low-rate ADCs. We can achieve C-times the sampling rate of a single ADC if all the shifts between the channels are identical. In practice, however, it is not possible to avoid mismatch among shifts. Besides, the samples are also subject to jitter noise. In this paper, we propose a blind method to mitigate the joint effects of sampling jitter and shift mismatch in the TI-ADC structure. We assume the input signal to be bandlimited and incorporate the jitter via a stochastic model. Next, we derive an approximate model based on a first-order Taylor series and use an... 

    Timing mismatch compensation in TI-ADCS using Bayesian approach

    , Article 2015 23rd European Signal Processing Conference, EUSIPCO 2015, 31 August 2015 through 4 September 2015 ; August , 2015 , Pages 1391-1395 ; 9780992862633 (ISBN) Araghi, H ; Akhaee, M. A ; Amini, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    A TI-ADC is a circuitry to achieve high sampling rates by passing the signal and its shifted versions through a number of parallel ADCs with lower sampling rates. When the time shifts between the C channels of a TI-ADC are properly tuned, the aggregate of the obtained samples is equivalent to that of a single ADC with C-times the sampling rate. However, the performance of a TI-ADC can be seriously degraded under interchannel timing mismatch. As this non-ideality cannot be avoided in practice, we need to first estimate the mismatch value, and then, compensate it. In this paper, by adopting a stochastic bandlimited signal model we study the signal recovery problem from the samples of a TI-ADC... 

    Joint compensation of jitter noise and time-shift errors in multichannel sampling system

    , Article IEEE Transactions on Instrumentation and Measurement ; Volume 68, Issue 10 , 2019 , Pages 3932-3941 ; 00189456 (ISSN) Araghi, H ; Akhaee, M. A ; Amini, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In high-speed analog-To-digital converters (ADCs), two main factors contribute to high power consumption. The first is the super linear relationship with the sampling rate; i.e., by doubling the sampling rate, the power consumption more than doubles. The second factor arises from the consumption of analog circuitry responsible to mitigate the jitter noise. By employing a multichannel sampling system, one can achieve high sampling rates by incorporating multiple low sampling-rate channels, which results in a linear scaling of power consumption with the number of channels. The main drawback of this system is the timing mismatch between the sampling channels. In this paper, we intend to jointly... 

    A unified formulation of gaussian versus sparse stochastic processes - Part II: Discrete-domain theory

    , Article IEEE Transactions on Information Theory ; Vol. 60, issue. 5 , 2014 , pp. 3036-3051 ; ISSN: 00189448 Unser, M ; Tafti, P. D ; Amini, A ; Kirshner, H
    2014
    Abstract
    This paper is devoted to the characterization of an extended family of continuous-time autoregressive moving average (CARMA) processes that are solutions of stochastic differential equations driven by white Lévy innovations. These are completely specified by: 1) a set of poles and zeros that fixes their correlation structure and 2) a canonical infinitely divisible probability distribution that controls their degree of sparsity (with the Gaussian model corresponding to the least sparse scenario). The generalized CARMA processes are either stationary or nonstationary, depending on the location of the poles in the complex plane. The most basic nonstationary representatives (with a single pole... 

    Effects of thickness and texture on mechanical properties anisotropy of commercially pure titanium thin sheets

    , Article Materials and Design ; Volume 44 , February , 2013 , Pages 528-534 ; 02641275 (ISSN) Nasiri Abarbekoh, H ; Ekrami, A ; Ziaei Moayyed, A. A ; Sharif University of Technology
    2013
    Abstract
    Simultaneous effects of thickness and texture on the anisotropy of mechanical properties and fracture behaviors of commercially pure titanium thin sheets were studied. The activation of different deformation systems, due to the split distribution of basal texture, led to mechanical properties anisotropy. The crack initiation and propagation energies, when the loading direction was parallel to the initial rolling direction, decreased with increasing thickness ranges from 0.25 to 1 mm. The changes of size, shape and distribution of dimples with increasing thickness confirmed the restriction of deformation systems and the development of triaxial stress state and plane-strain condition at the... 

    Impact of phase transformation on mechanical properties anisotropy of commercially pure titanium

    , Article Materials and Design ; Volume 37 , 2012 , Pages 223-227 ; 02641275 (ISSN) Nasiri Abarbekoh, H ; Ekrami, A ; Ziaei Moayyed, A. A ; Sharif University of Technology
    2012
    Abstract
    Effects of microstructure and texture, before and after phase transformation, on the anisotropy of the mechanical properties and fracture behaviors of commercially pure titanium were studied. Before phase transformation, due to the split distribution of basal texture the activation of different deformation systems led to mechanical properties anisotropy. Although the fracture mechanism in both specimens was voids nucleation, growth and coalescence, the shape, size and distribution of dimples were affected by active deformation systems. However, after phase transformation, basal plains in most grains were aligned with the transverse direction. This texture component led to the activation and... 

    Optimization of synthetic conditions of a novel collagen-based superabsorbent hydrogel by Taguchi method and investigation of its metal ions adsorption

    , Article Journal of Applied Polymer Science ; Volume 102, Issue 5 , 2006 , Pages 4878-4885 ; 00218995 (ISSN) Pourjavadi, A ; Salimi, H ; Amini Fazl, M. S ; Kurdtabar, M ; Amini Fazl, A. R ; Sharif University of Technology
    2006
    Abstract
    A novel biopolymer-based superabsorbent hydrogel was synthesized through chemical crosslinking by graft copolymerization of partially neutralized acrylic acid onto the hydrolyzed collagen, in the presence of a crosslinking agent and a free radical initiator. The Taguchi method, a robust experimental design, was employed for the optimization of the synthesis reaction based on the swelling capacity of the hydrogels. This method was applied for the experiments and standard L16 orthogonal array with three factors and four levels were chosen. The critical parameters that have been selected for this study are crosslinker (N,N′-methylene bisacrylamide), initiator (potassium persulfate), and monomer... 

    Multi-objective optimisation of McPherson strut suspension mechanism kinematics using Random Search Method

    , Article Indian Journal of Science and Technology ; July , 2015 , Volume 8, Issue 16 ; 09746846 (ISSN) Nasiri, S ; Sina, N ; Eslami, A ; Sharif University of Technology
    Indian Society for Education and Environment  2015
    Abstract
    McPherson suspension mechanism is one of the widespread mounted mechanisms in front axle of Front Wheel Drive (FWD) vehicles with transverse engine. In this study the kinematics of McPherson suspension mechanism is optimised in order to achieve the desired kinematic behavior and improve vehicle stability. First, the mechanism was modeled in Mechanical Desktop software package and the model transferred to Working Model 3D software for kinematic analysis. Then results of kinematic simulation compared to design criteria and as target function is established, by choosing the optimal amount of optimisation variables the amount of cost function has been minimized. Because of simple... 

    Inastantaneous baseline multiple damage detection and localization in an aluminum plate using Lamb waves

    , Article 30th Congress of the International Council of the Aeronautical Sciences, 25 September 2016 through 30 September 2016 ; 2016 ; 9783932182853 (ISBN) Alem, B ; Abedian, A ; Nasiri, M ; Sharif University of Technology
    International Council of the Aeronautical Sciences  2016
    Abstract
    In recent years, new Structural Health Monitoring (SHM) methodologies with a concept of "instantaneous baseline damage detection" are being developed by many researchers. In this context, this paper uses a new method to identify multiple damage in the aluminum plate. For this goal use from spars PZWS sensor network to generate and received guided waves. Ultrasonic waves are generated and measured from all possible different pairs of excitation and sensing transducers. For feature extraction of received signals used from continues wavelet transform. A probabilistic damage diagnostic algorithm based on correlation analysis was investigated to locate single or multiple damages. In this study,... 

    Design of two Inertial-based microfluidic devices for cancer cell separation from Blood: A serpentine inertial device and an integrated inertial and magnetophoretic device

    , Article Chemical Engineering Science ; 2021 ; 00092509 (ISSN) Nasiri, R ; Shamloo, A ; Akbari, J ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The separation of cancer cells from a heterogeneous biological sample such as blood plays a vital role in cancer study and future treatments. In this paper, we designed and investigated two microfluidic devices for cancer cell separation, including a serpentine inertial device and an integrated inertial-magnetophoretic device. Firstly, numerical modeling was carried out to study the fluid flow, particles’ trajectories in the inertial device. Then the device was fabricated using soft photolithography and suspension of two types of microparticles with the size of 10 and 15 µm were injected into the microchannel separately to investigate the particles’ trajectories and focusing behavior at... 

    Design of a hybrid inertial and magnetophoretic microfluidic device for ctcs separation from blood

    , Article Micromachines ; Volume 12, Issue 8 , 2021 ; 2072666X (ISSN) Nasiri, R ; Shamloo, A ; Akbari, J ; Sharif University of Technology
    MDPI AG  2021
    Abstract
    Circulating tumor cells (CTCs) isolation from a blood sample plays an important role in cancer diagnosis and treatment. Microfluidics offers a great potential for cancer cell separation from the blood. Among the microfluidic-based methods for CTC separation, the inertial method as a passive method and magnetic method as an active method are two efficient well-established methods. Here, we investigated the combination of these two methods to separate CTCs from a blood sample in a single chip. Firstly, numerical simulations were performed to analyze the fluid flow within the proposed channel, and the particle trajectories within the inertial cell separation unit were investigated to... 

    Design of two Inertial-based microfluidic devices for cancer cell separation from Blood: A serpentine inertial device and an integrated inertial and magnetophoretic device

    , Article Chemical Engineering Science ; Volume 252 , 2022 ; 00092509 (ISSN) Nasiri, R ; Shamloo, A ; Akbari, J ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The separation of cancer cells from a heterogeneous biological sample such as blood plays a vital role in cancer study and future treatments. In this paper, we designed and investigated two microfluidic devices for cancer cell separation, including a serpentine inertial device and an integrated inertial-magnetophoretic device. Firstly, numerical modeling was carried out to study the fluid flow, particles’ trajectories in the inertial device. Then the device was fabricated using soft photolithography and suspension of two types of microparticles with the size of 10 and 15 µm were injected into the microchannel separately to investigate the particles’ trajectories and focusing behavior at... 

    Optimized compact-support interpolation kernels

    , Article IEEE Transactions on Signal Processing ; Volume 60, Issue 2 , November , 2012 , Pages 626-633 ; 1053587X (ISSN) Madani, R ; Ayremlou, A ; Amini, A ; Marvasti, F ; Sharif University of Technology
    2012
    Abstract
    In this paper, we investigate the problem of designing compact-support interpolation kernels for a given class of signals. By using calculus of variations, we simplify the optimization problem from an nonlinear infinite dimensional problem to a linear finite dimensional case, and then find the optimum compact-support function that best approximates a given filter in the least square sense (ℓ 2 norm). The benefit of compact-support interpolants is the low computational complexity in the interpolation process while the optimum compact-support interpolant guarantees the highest achievable signal-to-noise ratio (SNR). Our simulation results confirm the superior performance of the proposed kernel... 

    Task scheduling mechanisms in cloud computing: A systematic review

    , Article International Journal of Communication Systems ; Volume 33, Issue 6 , 2020 Amini Motlagh, A ; Movaghar, A ; Rahmani, A. M ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    Today, cloud computing has developed as one of the important emergent technologies in communication and Internet. It offers on demand, pay per use access to infrastructure, platforms, and applications. Due to the increase in its popularity, the huge number of requests need to be handled in an efficient manner. Task scheduling as one of the challenges in the cloud computing supports the requests for assigning a particular resource so as to perform effectively. In the resource management, task scheduling is performed where there is the dependency between tasks. Many approaches and case studies have been developed for the scheduling of these tasks. Up to now, a systematic literature review... 

    A new reliability-based task scheduling algorithm in cloud computing

    , Article International Journal of Communication Systems ; 2021 ; 10745351 (ISSN) Amini Motlagh, A ; Movaghar, A ; Rahmani, A. M ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    In the last decade, the scale of heterogeneous computing (HC) systems such as heterogeneous cloud computing environments was growing like never before. So network failures are unavoidable in such systems, which affect system reliability. Since the task scheduling algorithm in HC is challenging, we investigate a new reliability-aware task scheduling algorithm (RATSA) in this paper. RATSA is designed to schedule tasks on directed acyclic graphs (DAGs) by using the shuffled frog-leaping algorithm (SFLA) and genetic algorithm (GA) as evolutionary algorithms. The population-based SFLA-GA is applied to optimize makespan in the RATSA as an NP-complete problem. Moreover, the proposed algorithm...