Loading...
Search for:
niknazar--m
0.117 seconds
Total 19326 records
Performance analysis of EEG seizure detection features
, Article Epilepsy Research ; Volume 167 , 2020 ; Mousavi, S. R ; Niknazar, M ; Mardanlou, V ; Coelho, B. N ; Sharif University of Technology
Elsevier B.V
2020
Abstract
Automatic detection of epileptic seizures can serve as a valuable clinical tool which involves a more objective and computationally efficient method for the analysis of EEG data in order to generate increasingly accurate and reliable results. Automatic seizure detection is also an important component of closed-loop responsive cortical stimulation systems. The goal of this study is to evaluate EEG-based features recently proposed for seizure detection to discover the optimum ones for a reliable seizure detection system. We extracted seizure detection features from intracranial EEG signals that were recorded during invasive pre-surgical epilepsy monitoring of people with drug resistant focal...
Volumetric behavior quantification to characterize trajectory in phase space
, Article Chaos, Solitons and Fractals ; Volume 103 , 2017 , Pages 294-306 ; 09600779 (ISSN) ; Nasrabadi, A. M ; Shamsollahi, M. B ; Sharif University of Technology
2017
Abstract
This paper presents a methodology to extract a number of quantifier features to characterize volumetric behavior of trajectories in phase space. These features quantify expanding and contracting behaviors and complexity that can be used in nonlinear and chaotic signals classification or clustering problems. One of the features is directly extracted from the distance matrix and seven features are extracted from a matrix that is subsequently obtained from the distance matrix. To illustrate the proposed quantifiers, Mackey–Glass time series and Lorenz system were employed and feature evaluation was performed. It is shown that the proposed quantifier features are robust to different...
A new blind source separation approach based on dynamical similarity and its application on epileptic seizure prediction
, Article Signal Processing ; Volume 183 , 2021 ; 01651684 (ISSN) ; Nasrabadi, A. M ; Shamsollahi, M. B ; Sharif University of Technology
Elsevier B.V
2021
Abstract
Blind source separation is an important field of study in signal processing, in which the goal is to estimate source signals by having mixed observations. There are some conventional methods in this field that aim to estimate source signals by considering certain assumptions on sources. One of the most popular assumptions is the non-Gaussianity of sources which is the basis of many popular blind source separation methods. These methods may fail to estimate sources when the distribution of two or more sources is Gaussian. Hence, this study aims to introduce a new approach in blind source separation for nonlinear and chaotic signals by using a dynamical similarity measure and relaxing...
A new similarity index for nonlinear signal analysis based on local extrema patterns
, Article Physics Letters, Section A: General, Atomic and Solid State Physics ; Volume 382, Issue 5 , February , 2018 , Pages 288-299 ; 03759601 (ISSN) ; Motie Nasrabadi, A ; Shamsollahi, M. B ; Sharif University of Technology
Elsevier B.V
2018
Abstract
Common similarity measures of time domain signals such as cross-correlation and Symbolic Aggregate approximation (SAX) are not appropriate for nonlinear signal analysis. This is because of the high sensitivity of nonlinear systems to initial points. Therefore, a similarity measure for nonlinear signal analysis must be invariant to initial points and quantify the similarity by considering the main dynamics of signals. The statistical behavior of local extrema (SBLE) method was previously proposed to address this problem. The SBLE similarity index uses quantized amplitudes of local extrema to quantify the dynamical similarity of signals by considering patterns of sequential local extrema. By...
Application of Bhattacharyya distance as a dissimilarity index for automated prediction of epileptic seizures in rats
, Article 2010 International Conference on Intelligent and Advanced Systems, ICIAS 2010, 15 June 2010 through 17 June 2010 ; 2010 ; 9781424466238 (ISBN) ; Vosoughi Vahdat, B ; Shamsollahi, M. B ; Sayyah, M ; Sharif University of Technology
2010
Abstract
Seizures are defined as manifest of excessive and hypersynchronous activity of neurons in the cerebral cortex and represent a frequent malfunction of the human central nervous system. Therefore, the search for precursors and predictors of a seizure is of utmost clinical relevance and may even guide us to a deep understanding of the seizure generating mechanisms. In this study we analyzed invasive electroencephalogram (EEG) recordings in rats with experimentally induced generalized epilepsy with a nonlinear method called, dissimilarity index. In order to predict epileptic seizures automatically, Bhattacharyya distance between trajectory matrix of reference window, during an interval quite...
A new framework based on recurrence quantification analysis for epileptic seizure detection
, Article IEEE Journal of Biomedical and Health Informatics ; Volume 17, Issue 3 , 2013 , Pages 572-578 ; 21682194 (ISSN) ; Mousavi, S. R ; Vosoughi Vahdat, B ; Sayyah, M ; Sharif University of Technology
2013
Abstract
This study presents applying recurrence quantification analysis (RQA) on EEG recordings and their subbands: delta, theta, alpha, beta, and gamma for epileptic seizure detection. RQA is adopted since it does not require assumptions about stationarity, length of signal, and noise. The decomposition of the original EEG into its five constituent subbands helps better identification of the dynamical system of EEG signal. This leads to better classification of the database into three groups: Healthy subjects, epileptic subjects during a seizure-free interval (Interictal) and epileptic subjects during a seizure course (Ictal). The proposed algorithm is applied to an epileptic EEG dataset provided...
A new dissimilarity index of EEG signals for epileptic seizure detection
, Article Final Program and Abstract Book - 4th International Symposium on Communications, Control, and Signal Processing, ISCCSP 2010, 3 March 2010 through 5 March 2010 ; March , 2010 ; 9781424462858 (ISBN) ; Mousavi, S. R ; Vosoughi Vahdat, B ; Shamsollahi, M. B ; Sayyah, M ; Sharif University of Technology
2010
Abstract
Epileptic seizures are generated by an abnormal synchronization of neurons. Since epileptic seizures are unforeseeable for the patients, epileptic seizures detection is an interesting issue in epileptology, that novel approaches to understand the mechanism of epileptic seizures. In this study we analyzed invasive electroencephalogram (EEG) recordings in patients suffering from medically intractable focal epilepsy with a nonlinear method called, dissimilarity index. In order to detect epileptic seizures Bhattacharyya distance between trajectory matrix of reference window during an interval quite distant in time from any seizure and trajectory matrix of present window is employed to measure...
Detection of characteristic points of ecg using quadratic spline wavelet transfrom
, Article 3rd International Conference on Signals, Circuits and Systems, SCS 2009, 6 November 2009 through 8 November 2009, Medenine ; 2009 ; 9781424443987 (ISBN) ; Vahdat, B. V ; Mousavi, S. R ; Sharif University of Technology
2009
Abstract
This paper presents a method for ECG characteristic points detection based on Wavelet Transform (WT). Wavelet Transform leads to more accurate results in analyzing nonstationary signals such as ECG. The selected wavelet is quadratic spline wavelet. Using quadratic spline mother wavelet, a method for detection of QRS complex and T and P waves is presented and evaluated with the help of MIT-BIH Arrhythmia database. Experimental results show excellent performance of the proposed method. © 2009 IEEE
Application of a dissimilarity index of EEG and its sub-bands on prediction of induced epileptic seizures from rat's EEG signals
, Article IRBM ; Volume 33, Issue 5-6 , December , 2012 , Pages 298-307 ; 19590318 (ISSN) ; Mousavi, S. R ; Shamsollahi, M. B ; Vosoughi Vahdat, B ; Sayyah, M ; Motaghi, S ; Dehghani, A ; Noorbakhsh, S. M ; Sharif University of Technology
2012
Abstract
Objective: Epileptic seizures are defined as manifest of excessive and hyper-synchronous activity of neurons in the cerebral cortex that cause frequent malfunction of the human central nervous system. Therefore, finding precursors and predictors of epileptic seizure is of utmost clinical relevance to reduce the epileptic seizure induced nervous system malfunction consequences. Researchers for this purpose may even guide us to a deep understanding of the seizure generating mechanisms. The goal of this paper is to predict epileptic seizures in epileptic rats. Methods: Seizures were induced in rats using pentylenetetrazole (PTZ) model. EEG signals in interictal, preictal, ictal and postictal...
A unified approach for detection of induced epileptic seizures in rats using ECoG signals
, Article Epilepsy and Behavior ; Volume 27, Issue 2 , 2013 , Pages 355-364 ; 15255050 (ISSN) ; Mousavi, S. R ; Motaghi, S ; Dehghani, A ; Vosoughi Vahdat, B ; Shamsollahi, M. B ; Sayyah, M ; Noorbakhsh, S. M ; Sharif University of Technology
2013
Abstract
Objective: Epileptic seizure detection is a key step for epilepsy assessment. In this work, using the pentylenetetrazole (PTZ) model, seizures were induced in rats, and ECoG signals in interictal, preictal, ictal, and postictal periods were recorded. The recorded ECoG signals were then analyzed to detect epileptic seizures in the epileptic rats. Methods: Two different approaches were considered in this work: thresholding and classification. In the thresholding approach, a feature is calculated in consecutive windows, and the resulted index is tracked over time and compared with a threshold. The moment the index crosses the threshold is considered as the moment of seizure onset. In the...
Probability of missed detection as a criterion for receiver placement in MIMO PCL
, Article IEEE National Radar Conference - Proceedings, 7 May 2012 through 11 May 2012, Atlanta, GA ; 2012 , Pages 0924-0927 ; 10975659 (ISSN) ; 9781467306584 (ISBN) ; Chitgarha, M. M ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
IEEE
2012
Abstract
Using multiple antennas at the transmit and receive sides of a passive radar brings both the benefits of MIMO radar and passive radar. However one of the obstacles arisen in such configuration is the receive antennas placement in proper positions so that the radar performance is improved. Here we just consider the case of positioning one receiver among multiple illuminators of opportunity. Indeed it is a start for the solution of optimizing the geometry of the multiple receivers in a passive radar
An efficient method for the ring opening of epoxides with aromatic amines by Sb(III) chloride under microwave irradiation
, Article Journal of Chemical Research ; Issue 4 , 2008 , Pages 220-221 ; 03082342 (ISSN) ; Hashemi, M. M ; Mottaghi, M. M ; Foroughi, M. M ; Sharif University of Technology
2008
Abstract
SbCl3 supported on montmorillonite K-10 is an efficient catalyst for the ring opening of epoxides with aromatic amines under solvent-free conditions and microwave irradiation to give the corresponding b-amino alcohols in high yields with high regioselectivity
MIMO radar signal design to improve the MIMO ambiguity function via maximizing its peak
, Article Signal Processing ; Volume 118 , 2016 , Pages 139-152 ; 01651684 (ISSN) ; Radmard, M ; Nazari Majd, M ; Karbasi, S. M ; Nayebi, M. M ; Sharif University of Technology
Elsevier
2016
Abstract
One of the important obstacles in MIMO (Multiple Input Multiple Output) radars is the issue of designing proper transmit signals. Indeed, the capability of signal design is a significant advantage in MIMO radars, through which, the system can achieve much better performance. Many different aspects of this performance improvement have been considered yet, and the transmit signals have been designed to attain such goal, e.g., getting higher SNR or better detector's performance at the receiver. However, an important tool for evaluating the radar's performance is its ambiguity function. In this paper, we consider the problem of transmit signal design, in order to optimize the ambiguity function...
Detection-localization tradeoff in MIMO radars
, Article Radioengineering ; Volume 26, Issue 2 , 2017 , Pages 581-587 ; 12102512 (ISSN) ; Radmard, M ; Chitgarha, M. M ; Bastani, M. H ; Nayebi, M. M ; Sharif University of Technology
2017
Abstract
Two gains play key roles in recently developed MIMO wireless communication systems: "spatial diversity" gain and "spatial multiplexing" gain. The diversity gain refers to the capability to decrease the error rate of the MIMO channel, while the multiplexing gain implicitly refers to the amount of increase in the capacity of the MIMO channel. It has been shown that there is a fundamental tradeoff between these two types of gains, meaning interplay between increasing reliability (via an increase in the diversity gain) and increasing data rate (via an increase in the multiplexing gain). On the other hand, recently, MIMO radars have attracted much attention for their superior ability to enhance...
Antenna placement and power allocation optimization in MIMO detection
, Article IEEE Transactions on Aerospace and Electronic Systems ; Vol. 50, Issue 2 , April , 2014 , pp. 1468-1478 ; Chitgarha, M. M ; Majd, M. N ; Nayebi, M. M ; Sharif University of Technology
2014
Abstract
It is a well known fact that using multiple antennas at transmit and receive sides improves the detection performance. However, in such multiple-input multiple-output (MIMO) configuration, proper positioning of transmitters and receivers is a big challenge that can have significant influence on the performance of the overall system. In addition, determining the power of each transmitter under a total power constraint is a problem that should be solved in order to enhance the performance and coverage of such a system. In this paper, we design the Neyman-Pearson detector under the Rayleigh scatter model and use it to introduce a criterion for the antenna placement at both transmit and receive...
Ambiguity function of MIMO radar with widely separated antennas
, Article Proceedings International Radar Symposium ; 16 -18 June , 2014 ; ISSN: 21555753 ; Chitgarha, M. M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
2014
Abstract
There has been much interest, recently, towards exploiting the Multiple-Input Multiple-Output (MIMO) technique in radar. It is shown that using multiple antennas at transmit and receive sides can improve the performance of the system. However, in order to analyze the system's performance, its ambiguity function, i.e. the ambiguity function of a MIMO radar, is needed to be defined. In this paper, beginning from the information theoretic definitions, we derive such function, specifically for a MIMO radar with widely separated antennas
Choosing the position of the receiver in a MISO passive radar system
, Article European Microwave Week 2012: "Space for Microwaves", EuMW 2012, Conference Proceedings - 9th European Radar Conference, EuRAD 2012 ; 2012 , Pages 318-321 ; 9782874870293 (ISBN) ; Majd, M. N ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
2012
Abstract
By combining the two ideas of MIMO (Multiple Input Multiple Output) and PCL (Passive Coherent Location) in radar, one can achieve the advantages of both recently developed techniques simultaneously. While using multiple antennas at the receive side provides a spatial diversity of the object to be detected, using multiple illuminators of opportunity, most importantly, makes the radar covert to the interceptors. One obstacle in such MIMO configuration is choosing the positions of the receive antennas. In this paper, after analyzing the Neyman-Pearson detector for the DVB-T based PCL, we introduce the probability of missed detection as a criterion to place the receive antenna. Here, we only...
Adaptive filtering techniques in passive radar
, Article Proceedings International Radar Symposium, Dresden ; Volume 2 , June , 2013 , Pages 1067-1078 ; 21555753 (ISSN) ; 9783954042234 (ISBN) ; Radmard, M ; Majd, M. N ; Nayebi, M. M ; Sharif University of Technology
2013
Abstract
One of the most important obstacles in passive radar applications is removing the direct signal from the target channel. Otherwise, week echoes from the targets in the target channel would be ignored due to the limited dynamic range of the system. One of the most effective techniques in this field is using adaptive filters. In this paper various adaptive filters are introduced and their performances are shown and compared
Ambiguity function based receiver placement in multi-site radar
, Article 2016 CIE International Conference on Radar, RADAR 2016, 10 October 2016 through 13 October 2016 ; 2017 ; 9781509048281 (ISBN) ; Chitgarha, M. M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
2017
Abstract
It has been shown that using multiple antennas in a radar system improves the performance considerably, since multiple target echoes are received from different aspect angles of the target. In this way, the target detection is improved. However, when using multiple antennas, some problems, such as designing the transmit signals, synchronization, etc. emerge that should be solved. One of such problems is the receiver placement. Receiver placement deals with choosing a proper position for the receive antenna in order to optimize the whole system's performance. In this paper, a receiver placement procedure based on improving the radar ambiguity function is proposed for the case of a multisite...
Improving MIMO radar's performance through receivers' positioning
, Article IET Signal Processing ; Volume 11, Issue 5 , 2017 , Pages 622-630 ; 17519675 (ISSN) ; Radmard, M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
Institution of Engineering and Technology
2017
Abstract
By employing the MIMO (multiple-input-multiple-output) technology in radar, some new problems emerged, that, in order to benefit the MIMO gains in radar, it was necessary to solve them suitably. One of such obstacles is determining the positions of receive antennas in a MIMO radar system with widely separated antennas (WS MIMO radar), since it is shown that the antennas' positions affect the whole system's performance considerably. In this study, a proper receivers' positioning procedure is proposed. To do this end, four criteria are developed based on the proposed MIMO detector and the MIMO ambiguity function. The simulations verify that the proposed positioning procedure improves the...