Loading...
Search for: orouji--nooshin
0.122 seconds

    The Impact of Negative/Positive Emotions on English Language Teachers` Identity: A Mixed-Method Research

    , M.Sc. Thesis Sharif University of Technology Orouji, Vida (Author) ; Rezaei, Saeed (Supervisor)
    Abstract
    This study was a mixed-method research into the impact of emotions on the professional identities of teachers. The researcher followed Zembylas (2005a, 2005b) in conducting this study following the argument that politics and disciplinary power affect every aspect of teachers` life, hence their emotions and professional identities. Foucault (1975, 1984) was the source of theoretical underpinning in this study. The researcher used an open written interview, an attitudinal questionnaire, and a written narrative inquiry to collect the required data. Ten English language teachers (8 English Institute teachers, 2 public school teachers) took part in the first phase. One-hundred teachers from both... 

    Design and Optimization of Digital Microfluidic Chip for Cell Sorting

    , M.Sc. Thesis Sharif University of Technology Orouji, Nooshin (Author) ; Fardmanesh, Mehdi (Supervisor)
    Abstract
    Today, microfluidics, representing the precise and controlled displacement of small amounts of fluid, is one of the most efficient tools available in various research fields, including medicine. Digital microfluidics is one of the newest microfluidic methods, which is based on the theory of electrowetting on dielectric. According to this theory, by applying a voltage difference to a droplet of fluid on a hydrophobic surface, the droplet can be moved on that surface. Therefore, by fabricating a plate containing a number of electrodes completely isolated from each other and controlling them, small droplets of fluid can be moved on a hydrophobic surface. In this thesis, the electrodes of this... 

    Additive Manufacturing of Structured Stainless Steel Electrodes Functionalized with Transition Metal-Oorganic Frameworks for Water Splitting

    , M.Sc. Thesis Sharif University of Technology Orouji, Mina (Author) ; Simchi, Abdolreza (Supervisor)
    Abstract
    Water splitting reaction always faces challenges such as low efficiency, slow kinetics, and long-term instability of the catalyst. In this study, an electrode made of low-carbon 316 stainless steel fabricated by selective laser melting was initially used as the catalyst. The overpotential for hydrogen evolution reaction at a current density of 10 mA cm-2 using this electrode was calculated to be -0.505 V vs. RHE. This electrode had the capability of producing hydrogen gas at a rate of 3.6 mL min-1. Then, to reduce the overpotential, improve the efficiency, and stability of this electrode, its surface was modified by electrochemical methods, and metal-organic framework with cores of iron,... 

    Two-dimensional quantum simulation of scaling effects in ultrathin body MOSFET structure: NEGF approach

    , Article 14th International Workshop on the Physics of Semiconductor Devices, IWPSD, Mumbai, 16 December 2007 through 20 December 2007 ; 2007 , Pages 240-242 ; 9781424417285 (ISBN) Orouji, A.A ; Dehdashti, N ; Faez, R ; Sharif University of Technology
    2007
    Abstract
    For the first time, we present self-consistent solution of ultrathin body device structures to investigate the device parameters variation on the characteristics of nanoscale MOSFET. Our two dimensional (2-D) device simulator Is based on Nonequlibrium Green's Function (NEGF) forma lism. Starting from a basic structure (DG-MOSFET) with a gate length of 10 nm, variation of gate length, channel thickness, gate oxide parameters was carried out in connection with the numerical calculation of device characteristics. In this work Quantum transport equations are solved in 2-D by NEGF method in active area of the device to obtain the charge density and Poisson's equation is solved in entire domain of... 

    Machine Learning-Assisted Colorimetric Assay Based on Au@Ag Nanorods for Chromium Speciation

    , Article Analytical Chemistry ; Volume 95, Issue 26 , 2023 , Pages 10110-10118 ; 00032700 (ISSN) Orouji, A ; Ghasemi, F ; Hormozinezhad, M. R ; Sharif University of Technology
    American Chemical Society  2023
    Abstract
    The oxidation state of an element significantly controls its toxicological impacts on biological ecosystems. Therefore, design of robust sensing strategies for multiplex detection of species with respect to their oxidation states or bonding conditions, i.e., chemical speciation, is quite consequential. Chromium (Cr) species are known as the most abundant inorganic groundwater pollutants and can be quite harmful to human health depending on their oxidation states. In the present study, a multicolorimetric probe based on silver-deposition-induced color variations of gold nanorods (AuNRs) was designed for identification and quantification of Cr species including Cr (III) and Cr (VI) (i.e.,... 

    Design of Colorimetric Sensor Array for Simultanous Detection of Phosalone and Azinphosmethyl Pesticides Based on Aggregation Silver Nanoparticles (AgNPs)

    , M.Sc. Thesis Sharif University of Technology Orouji, Afsaneh (Author) ; Hormozinezhad, Mohammad Reza (Supervisor)
    Abstract
    Development of simple and rapid approaches for identification of pesticides has been known as a critical demand, due to the broad usage of pesticides and their harmful effects on mammals. Herein, we have introduced a silver nanoparticle (AgNP) based colorimetric sensor array for simultaneous identification of Azinphosmethyl (AM) and Phosalone (PS). In the presence of the target pesticides, unmodified AgNPs at various pHs (4.5, 5.5 and 9.5) showed different aggregation behaviours. As a result of aggregation, the color and UV-Vis spectra of AgNPs changed which led to distinct patterns for AM and PS. The aggregation induced spectral changes of AgNPs were used to identify AM and PS with the help... 

    Experimental Study of Biocompatibility and Proliferation of Stem Cells on the Scaffold with Natural Structure

    , M.Sc. Thesis Sharif University of Technology Zamani, Masoud (Author) ; Vosoughi, Manouchehr (Supervisor) ; Alemzadeh, Iran (Supervisor) ; Haghighipour, Nooshin (Supervisor)
    Abstract
    The heart diseases and in particular coronary artery disease have been vastly increased in recent years. Bypass operation is the major recognized way of this disease treatment however, one third of patients don’t have the suitable autologous vein for this operation. It should be noted that for this operation a suitable conduit with diameter as narrow as possible is needed. On the other hand, usage of synthetic polymers won’t be suitable for this operation due to the coagulation forming. The only way to overcome this problem is the use of tissue engineering with the aid of scaffold and autologous cells with the natural tissue function, which reconstructed the desire tissue causing no... 

    Corrigendum to “ththnated development of a pH assisted AgNP-based colorimetric sensor array for simultaneous identification of phosalone and azinphosmethyl pesticides” [spectrochim. acta a mol. biomol. spectrosc. 219 (2019) 496–503](S138614251930455X)(10.1016/j.saa.2019.04.074)

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 223 , 2019 ; 13861425 (ISSN) Orouji, A ; Abbasi Moayed, S ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    The authors regret “There are some meaningless letters at the beginning of the article's title. The authors would like to inform that the correct title is “Development of a pH assisted AgNP-based colorimetric sensor Array for simultaneous identification of phosalone and azinphosmethyl pesticides.” The authors would like to apologise for any inconvenience caused. © 2019 Elsevier B.V  

    ThThnated Development of a pH assisted AgNP-based colorimetric sensor Array for simultaneous identification of phosalone and azinphosmethyl pesticides

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 219 , 2019 , Pages 496-503 ; 13861425 (ISSN) Orouji, A ; Abbasi Moayed, S ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Development of simple and rapid methods for identification of pesticides, due to their broad usage and harmful effects on mammals, has been known as a critical demand. Herein, we have introduced a silver nanoparticle (AgNP)based colorimetric sensor array for simultaneous identification of Azinphosmethyl (AM)and Phosalone (PS)pesticides. In the presence of the target pesticides, unmodified AgNPs at various pHs (4.5, 5.5 and 9.5)showed different aggregation behaviors. As a result of aggregation, the color and UV–Vis spectra of AgNPs changed differentially, leading to distinct response patterns for AM and PS. The aggregation induced spectral changes of AgNPs, were used to identify AM and PS... 

    Providing Multicolor Plasmonic Patterns with Au@Ag Core-Shell Nanostructures for Visual Discrimination of Biogenic Amines

    , Article ACS Applied Materials and Interfaces ; Volume 13, Issue 17 , 2021 , Pages 20865-20874 ; 19448244 (ISSN) Orouji, A ; Ghasemi, F ; Bigdeli, A ; Hormozi Nezhad, M. R ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Biogenic amines (BAs) are known as substantial indicators of the quality and safety of food. Developing rapid and visual detection methods capable of simultaneously monitoring BAs is highly desired due to their harmful effects on human health. In the present study, we have designed a multicolor sensor array consisting of two types of gold nanostructures (i.e., gold nanorods (AuNRs) and gold nanospheres (AuNSs)) for the discrimination and determination of critical BAs (i.e., spermine (SM), tryptamine (TT), ethylenediamine (EA), tyramine (TR), spermidine (SD), and histamine (HT)). The design principle of the probe was based on the metallization of silver ions on the surface of AuNRs and AuNSs... 

    A wide-range pH indicator based on colorimetric patterns of gold@silver nanorods

    , Article Sensors and Actuators B: Chemical ; Volume 358 , 2022 ; 09254005 (ISSN) Orouji, A ; Abbasi Moayed, S ; Ghasemi, F ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The potential of hydrogen (pH) is a basic and critical parameter representing the function of numerous chemicals/biomolecules. Due to the widespread applications of pH in diverse fields, the development of rapid and simple yet reliable probes for the determination of pH has attracted significant interest. In this paper, by using AuNRs, silver ions, and ascorbic acid as colorimetric pH sensor, a multicolorimetric nanosensor is described for pH measurement. The reduction of silver ions by ascorbic acid which is strongly influenced by pH, results in silver nanoshell deposition on the surface of AuNRs. Consequently, the formation of Au@Ag core-shell NRs causes a series of blue shifts in the... 

    Design of Colorimetric Sensor Arrays Based on Gold Nanorods for Speciation and Discrimination of Biomolecules and Environmental Pollutants

    , Ph.D. Dissertation Sharif University of Technology Orouji, Afsaneh (Author) ; Hormozinezhad, Mohammad Reza (Supervisor) ; Ghasemi, Forough (Co-Supervisor)
    Abstract
    The vivid optical properties of gold nanorods (AuNRs) arising from their unique structural anisotropy have been an object of fascination in a broad range of applications over the past decade. The pseudo-one-dimensional rod-shaped morphology of AuNRs underlies two distinct LSPR bands attributed to the longitudinal and the transversal oscillation of the surface plasmons. Indeed, the brilliant and high-contrast rainbow color tonality of AuNRs primarily emanates from the dramatic dependency of the location of the aforementioned bands on the aspect ratio of the nanorods. It is so profound that a minute increment of the aspect ratio is followed by a significant redshift of the longitudinal peak... 

    Electrochemical Wearable Biosensors and Bioelectronic Devices Based on Hydrogels: Mechanical Properties and Electrochemical Behavior

    , Article Biosensors ; Volume 13, Issue 8 , 2023 ; 20796374 (ISSN) Saeidi, M ; Chenani, H ; Orouji, M ; Adel Rastkhiz, M ; Bolghanabadi, N ; Vakili, S ; Mohamadnia, Z ; Hatamie, A ; Simchi, A ; Sharif University of Technology
    Multidisciplinary Digital Publishing Institute (MDPI)  2023
    Abstract
    Hydrogel-based wearable electrochemical biosensors (HWEBs) are emerging biomedical devices that have recently received immense interest. The exceptional properties of HWEBs include excellent biocompatibility with hydrophilic nature, high porosity, tailorable permeability, the capability of reliable and accurate detection of disease biomarkers, suitable device–human interface, facile adjustability, and stimuli responsive to the nanofiller materials. Although the biomimetic three-dimensional hydrogels can immobilize bioreceptors, such as enzymes and aptamers, without any loss in their activities. However, most HWEBs suffer from low mechanical strength and electrical conductivity. Many studies... 

    A new 3D, microfluidic-oriented, multi-functional, and highly stretchable soft wearable sensor

    , Article Scientific Reports ; Volume 12, Issue 1 , 2022 ; 20452322 (ISSN) Annabestani, M ; Esmaeili Dokht, P ; Olyanasab, A ; Orouji, N ; Alipour, Z ; Sayad, M. H ; Rajabi, K ; Mazzolai, B ; Fardmanesh, M ; Sharif University of Technology
    Nature Research  2022
    Abstract
    Increasing demand for wearable devices has resulted in the development of soft sensors; however, an excellent soft sensor for measuring stretch, twist, and pressure simultaneously has not been proposed yet. This paper presents a novel, fully 3D, microfluidic-oriented, gel-based, and highly stretchable resistive soft sensor. The proposed sensor is multi-functional and could be used to measure stretch, twist, and pressure, which is the potential of using a fully 3D structure in the sensor. Unlike previous methods, in which almost all of them used EGaIn as the conductive material, in this case, we used a low-cost, safe (biocompatible), and ubiquitous conductive gel instead. To show the... 

    Optical nanoprobes for chiral discrimination

    , Article Analyst ; Volume 145, Issue 20 , 2020 , Pages 6416-6434 Bigdeli, A ; Ghasemi, F ; Fahimi Kashani, N ; Abbasi Moayed, S ; Orouji, A ; Jafar Nezhad Ivrigh, Z ; Shahdost Fard, F ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    Chiral discrimination has always been a hot topic in chemical, food and pharmaceutical industries, especially when dealing with chiral drugs. Enantiomeric recognition not only leads to better understanding of the mechanism of molecular recognition in biological systems, but may further assist in developing useful molecular devices in biochemical and pharmaceutical studies. By emerging nanotechnology and exploiting nanomaterials in sensing applications, a great deal of attention has been given to the design of optical nanoprobes that are able to discriminate enantiomers of chiral analytes. This review explains how engineering nanoparticles (NPs) with desired physicochemical properties allows...