Loading...
Search for: pirouzpanah--sahand
0.036 seconds

    Experimental and analytical modeling of phase change micropump

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Saidi, M. H ; Safaei, H ; Sadjadi, B ; Pirouzpanah, S ; Sharif University of Technology
    2006
    Abstract
    In this research a phase change micropump as a novel type of non-mechanical micropumps has been investigated. A one dimensional model has been developed to describe the pumping mechanism and assess the working characteristics of the micropump. Conservation of mass, momentum and energy have been employed to obtain an algebraic equation for the flow rate which depends on seven non-dimensional numbers. The governing equation has been solved to study the effect of various operating parameters on the micropump performance. To verify the analytical approach, an experimental set up has been constructed. The results show that the theoretical model is in reasonable agreement with the experimental... 

    Optimum design and vibration suppression of a piezoelectric amplified microactuator using FEM analysis

    , Article s20th International Microprocesses and Nanotechnology Conference, MNC 2007, Kyoto, 5 November 2007 through 8 November 2007 ; February , 2007 , Pages 378-379 ; 4990247248 (ISBN); 9784990247249 (ISBN) Mahboobi, H ; Shahidi, A ; Pirouzpanah, S ; Esteki, H ; Sarkar, S ; Sharif University of Technology
    2007
    Abstract
    In this research the optimum design of a piezoelectric amplified microactuator has been achieved via equation (1) and sensitivity analysis in FEM simulation software. In addition, for the sake of simplicity and utilizing the FEM software simulation facilities, the control strategy has been embedded in FEM simulation as a programming routine. The simulations showed the efficiency of the proposed controller to suppress the microactuator's undesired vibrations  

    Trajectory following of a micro motion stage based on closed-loop FEM simulation

    , Article ASME International Mechanical Engineering Congress and Exposition, IMECE 2007, Seattle, WA, 11 November 2007 through 15 November 2007 ; Volume 11 PART A , 2008 , Pages 155-158 ; 079184305X (ISBN); 9780791843055 (ISBN) Shahidi, A ; Mahboobi, S. H ; Pirouzpanah, S ; Esteki, H ; Sarkar, S ; Sharif University of Technology
    2008
    Abstract
    Micro motion stages are one of the essential components in field of micro robotics and ultra fine positioning systems. This research presents the optimum design of a 3-DOF micro motion stage and its position control using FEM simulation. This stage to be studied uses a 3 RRR flexure hinge base compliant mechanism driven by three piezoelectric stack actuators to provide micro scale planar motion. First of all parametric modeling of the stage will be fulfilled in ANSYS environment utilizing a commercial piezostack and different types of flexure hinges. Hence the Jacobian matrix will be achieved for each case. The optimum selection of the hinge form will be achieved upon results of the previous... 

    Thermo-hydrodynamic modeling of a single bubble nozzle-diffuser phase change micropump

    , Article 6th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2008, Darmstadt, 23 June 2008 through 25 June 2008 ; Issue PART B , June , 2008 , Pages 1237-1243 ; 0791848345 (ISBN); 9780791848340 (ISBN) Saidi, M. S ; Saeedi, M. H ; Pirouzpanah, S ; Nikparto, A ; ASME ; Sharif University of Technology
    2008
    Abstract
    Nowadays, the potential of phase change process in liquids at micro scale attracts the scientists to fabricate this type of micropumps. Such micropumps have widely found applications in industrial and medical equipments such as recent printers. Not using mechanical parts such as valves, and having small sizes and high and controllable mass flow rates are the advantages of these micropumps. In the nozzle diffuser phase change micropump a heat pulse generates a bubble in a chamber; therefore, the pressure pulse which is generated by the bubble, causes the bubble to expand suddenly with high rate, then the pressure of bubble reduces to the vapor pressure and causes negative rate of expansion to... 

    Trajectory following of a micro motion stage based on closedloop fem simulation

    , Article ASME 2007 International Mechanical Engineering Congress and Exposition, IMECE 2007, 11 November 2007 through 15 November 2007 ; Volume 11 , 2007 , Pages 155-158 ; 079184305X (ISBN) Shahidi, A ; Mahboobi, S. H ; Pirouzpanah, S ; Esteki, H ; Sarkar, S ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2007
    Abstract
    Micro motion stages are one of the essential components in field of micro robotics and ultra fine positioning systems. This research presents the optimum design of a 3-DOF micro motion stage and its position control using FEM simulation. This stage to be studied uses a 3 RRR flexure hinge base compliant mechanism driven by three piezoelectric stack actuators to provide micro scale planar motion. First of all parametric modeling of the stage will be fulfilled in ANSYS environment utilizing a commercial piezostack and different types of flexure hinges. Hence the Jacobian matrix will be achieved for each case. The optimum selection of the hinge form will be achieved upon results of the previous... 

    Fabrication and Theoretical Investigation of a Single Bubble Nozzle-Diffuser Micropump

    , M.Sc. Thesis Sharif University of Technology Pirouzpanah, Sahand (Author) ; Saeedi, Mohammad Hassan (Supervisor) ; Saeedi, Mohammad Saeed (Supervisor)
    Abstract
    The potential of phase change process in liquids at microscale has been a favorite for the scientists to fabricate this type of micropumps. To hold unidirectional flow in microchannels usually nozzle-diffuser arrangement is used. Due to the existence of difference in pressure drop in the nozzle and diffuser sections, one can see unidirectional flow through diffuser direction. The objective of this article is to analyze analytically the thermo-hydrodynamic behavior of the Isopropyl Alcohol (IPA) bubble of a phase change micropump. Considering the simultaneous effects of hydrodynamic and thermal characteristics of the bubble in the bubble generation chamber, and temperature-saturation...