Loading...
Search for:
pourabdollah--p
0.128 seconds
Total 2120 records
An upper-bound finite element solution for rolling of stainless steel 304L under warm and hot deformation conditions
, Article Multidiscipline Modeling in Materials and Structures ; Volume 12, Issue 3 , 2016 , Pages 514-533 ; 15736105 (ISSN) ; Serajzadeh, S ; Sharif University of Technology
Emerald Group Publishing Ltd
2016
Abstract
Purpose: The purpose of this paper is to investigate the thermomechanical behavior of stainless steel AISI 304L during rolling at elevated temperatures. Design/methodology/approach: Two-dimensional finite element analysis together with the upperbound solution were used for predicting temperature field and required power in warm and hot rolling operations. The required power and heat of deformation were estimated employing an upper-bound solution based on cylindrical velocity field and at the same time, temperature distributions within the rolling steel and the work rolls were determined by means of a thermal finite element analysis. To consider the effect of flow stress and its dependence on...
A study on deformation behavior of 304L stainless steel during and after plate rolling at elevated temperatures
, Article Journal of Materials Engineering and Performance ; Volume 26, Issue 2 , 2017 , Pages 885-893 ; 10599495 (ISSN) ; Serajzadeh, S ; Sharif University of Technology
Springer New York LLC
2017
Abstract
In this work, microstructural evolutions and mechanical properties of AISI 304L stainless steel were studied after rolling operations at elevated temperatures. Rolling experiments were conducted under warm and hot rolling conditions in the range of 600-1000 °C employing different reductions. Then, the developed microstructures and the mechanical properties of the steel were evaluated by means of uniaxial tensile testing, metallographic observations, and x-ray diffraction method. Besides, two-dimensional finite element analysis coupled with artificial neural network modeling was developed to assess thermo-mechanical behavior of the steel during and after rolling. The results show that...
Investigation and Modeling of Fouling and its Affecting Operational Parameters in Membrane Bioreactors (MBR) for Municipal Wastewater Treatment
, Ph.D. Dissertation Sharif University of Technology ; Torkian, Ayoub (Supervisor)
Abstract
This study aims to investigate the influence of important operational parameters on membrane fouling with the approach of fouling layers and to model these influences in the membrane bioreactor (MBR) for municipal wastewater treatment. At the first phase, 11 operational scenarios were executed using a pilot setup for identifying the system behavior and the optimal scenario. Protein and carbohydrate as the fouling components (SMP) and the transmembrane pressure (TMP) as the fouling criteria were measured in the tests. By studying the influence of operational parameters (sludge retention time (SRT), aeration rate and filtration mode), some useful results obtained for the next phase, including...
Theoretical and Experimental Investigations of Deformation Behavior from Stainless Steel 304L During Rolling at Evelated Temperatures
, M.Sc. Thesis Sharif University of Technology ; Serajzadeh, Siamak (Supervisor)The seismic performance of K-braced cold-formed steel shear panels with improved connections
, Article Journal of Constructional Steel Research ; Volume 135 , 2017 , Pages 56-68 ; 0143974X (ISSN) ; Farahbod, F ; Rahimzadeh Rofooei, F ; Sharif University of Technology
Elsevier Ltd
2017
Abstract
In this paper the performance of light weight K-braced cold formed steel (CFS) shear panels under cyclic loading is experimentally evaluated. It is generally known that the brace-stud connection details has an important effect on the performance of the braced CFS shear panels in terms of lateral stiffness, energy dissipation, and ductility factor. In this study, four full-scale, 2.4 m × 2.4 m, braced CFS shear panels made of C-sections were tested. It was observed that proper modification of the currently utilized braced to stud connections in K-braced, CFS shear panels could enhance their performance considerably by increasing their ultimate shear resistance up to 7 folds. Furthermore,...
A triple fouling layers perspective on evaluation of membrane fouling under different scenarios of membrane bioreactor operation
, Article Journal of Environmental Health Science and Engineering ; Volume 12, Issue 1 , June 2014 ; Torkian, A ; Hashemian, S. J ; Bakhshi, B ; Sharif University of Technology
June 2014
Abstract
One of the main factors affecting membrane fouling in MBRs is operational conditions. In this study the influence of aeration rate, filtration mode, and SRT on hollow fiber membrane fouling was investigated using a triple fouling layers perspective. The sludge microbial population distribution was also determined by PCR method. Through various applied operational scenarios the optimal conditions were: aeration rate of 15 LPM; relaxation mode with 40s duration and 8 min. interval; and SRT of 30 days. The similarity between SMP variations in triple fouling layers with its corresponding hydraulic resistance confirmed the effect of SMP on membrane fouling. Among three fouling fractions, the...
Experimental-numerical assessment of laterally-loaded CFS frames with steel sheathing and K-shaped braces
, Article Journal of Constructional Steel Research ; Volume 203 , 2023 ; 0143974X (ISSN) ; Rofooei, F. R ; Farahbod, F ; Pourabdollah, O ; Sharif University of Technology
Elsevier Ltd
2023
Abstract
In this study, the behavior of cold-form steel (CFS) frames equipped with various configurations of steel sheathing, and K-shaped braces are experimentally investigated. Low lateral resistance is a major problem with the CFS shear walls. Despite their advantages, such as being lightweight, ease of fabrication, and an environmentally friendly system, their lack of adequate lateral strength prevents engineers from widely using them, especially in areas with medium to high seismicity or mid-rise buildings. In this regard, a total of seven full-scale specimens with different configurations of steel sheathing and k-braced, with and without cladding, were tested to investigate their seismic...
Experimental Evaluation of Light Frame Steel Shear Wall with K-Braced and Suitable Sheathing under Cyclic Loading
, M.Sc. Thesis Sharif University of Technology ; Rahimzadeh Rofooei, Fayyaz (Supervisor) ; Farahbod, Farhang (Supervisor)
Abstract
Nowadays because of imbalance in supply and demand in the house industry, industrialization of building construction is one of the best ways to solve this problem. Currently, there is a strong tendency to develop guidelines for the design of Cold-Formed Steel (CFS) with different sheathing boards as seismic resistant shear walls. Also, the behavior of this systems is not very well known yet and more research is needed. In this work three K-braced frames with and without sheathing boards under lateral cyclic loading investigated experimentally. The first specimen as a control specimen is without sheathing board, second specimen was sheathed with Fibre-Cement board in one side and gypsum board...
Secrecy capacity scaling in large cooperative wireless networks
, Article IEEE Transactions on Information Theory ; Volume 63, Issue 3 , 2017 , Pages 1923-1939 ; 00189448 (ISSN) ; Papadimitratos, P. P ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2017
Abstract
We investigate large wireless networks subject to security constraints. In contrast to point-to-point, interferencelimited communications considered in prior works, we propose active cooperative relaying-based schemes. We consider a network with nl legitimate nodes, ne eavesdroppers, and path loss exponent α ≥ 2. As long as n2e (log(ne))γ = o(nl ), for some positive γ , we show that one can obtain unbounded secure aggregate rate. This means zero-cost secure communication, given fixed total power constraint for the entire network. We achieve this result through: 1) the source using Wyner randomized encoder and a serial (multi-stage) block Markov scheme, to cooperate with the relays and 2) the...
Fast estimation of connectivity in fractured reservoirs using percolation theory
, Article SPE Journal ; Volume 12, Issue 2 , 2007 , Pages 167-178 ; 1086055X (ISSN) ; King, P. R ; Nuratza, P ; Sharif University of Technology
Society of Petroleum Engineers (SPE)
2007
Abstract
Investigating the impact of geological uncertainty (i.e., spatial distribution of fractures) on reservoir performance may aid management decisions. The conventional approach to address this is to build a number of possible reservoir models, upscale them, and then run flow simulations. The problem with this approach is that it is computationally very expensive. In this study, we use another approach based on the permeability contrasts that control the flow, called percolation approach. This assumes that the permeability disorder of a rock can be simplified to either permeable or impermeable. The advantage is that by using some universal laws from percolation theory, the effect of the complex...
A new decoding scheme for errorless codes for overloaded CDMA with active user detection
, Article 2011 18th International Conference on Telecommunications, ICT 2011, Ayia Napa, 8 May 2011 through 11 May 2011 ; 2011 , Pages 201-205 ; 9781457700248 (ISBN) ; Pad, P ; Delgosha, P ; Marvasti, F ; Sharif University of Technology
2011
Abstract
Recently, a new class of binary codes for overloaded CDMA systems are proposed that not only has the ability of errorless communication but also suitable for detecting active users. These codes are called COWDA. In [1], a Maximum Likelihood (ML) decoder is proposed for this class of codes. Although the proposed scheme for coding/decoding shows impressive performance, the decoder can be significantly improved. In this paper, by assuming practical conditions for the traffic in the system, we suggest and prove an algorithm that increases the performance of the decoder several orders of magnitude (the Bit-Error-Rate (BER) is divided by a factor of about 400 in some E b/N0's). The algorithm...
Estimation of the Effective Permeability of Heterogeneous Porous Media by Using Percolation Concepts
, Article Transport in Porous Media ; Volume 114, Issue 1 , 2016 , Pages 169-199 ; 01693913 (ISSN) ; Gago, P. A ; King, P. R ; Sharif University of Technology
Springer Netherlands
2016
Abstract
In this paper we present new methods to estimate the effective permeability (keff) of heterogeneous porous media with a wide distribution of permeabilities and various underlying structures, using percolation concepts. We first set a threshold permeability (kth) on the permeability density function and use standard algorithms from percolation theory to check whether the high permeable grid blocks (i.e., those with permeability higher than kth) with occupied fraction of “p” first forms a cluster connecting two opposite sides of the system in the direction of the flow (high permeability flow pathway). Then we estimate the effective permeability of the heterogeneous porous media in different...
Percolation-based effective permeability estimation in real heterogeneous porous media
, Article 15th European Conference on the Mathematics of Oil Recovery, 29 August 2016 through 1 September 2016 ; 2016 ; 9462821933 (ISBN); 9789462821934 (ISBN) ; Gago, P ; King, P ; DCSE; Schlumberger; Shell ; Sharif University of Technology
European Association of Geoscientists and Engineers
2016
Abstract
It has long been understood that flow behavior in heterogeneous porous media is largely controlled by the continuity of permeability contrasts. With this in mind, we are looking in new methods for a fast estimation of the effective permeability which concentrates on the properties of the percolating cluster. From percolation concepts we use a threshold permeability value (Kth) by which the gridblocks with the highest permeability values connect two opposite side of the system in the direction of the flow. Those methods can be applied to heterogeneous media of a range of permeabilities distribution and various underlying structures. We use power law relations and weighted power averages that...
Optimization of sputtering parameters for the deposition of low resistivity indium tin oxide thin films
, Article Acta Metallurgica Sinica (English Letters) ; Vol. 27, issue. 2 , Apr , 2014 , p. 324-330 ; Bagheri, B ; Yazdanfar, P ; Rashidian, B ; Sasanpour, P ; Sharif University of Technology
2014
Abstract
Indium tin oxide (ITO) thin films have been deposited using RF sputtering technique at different pressures, RF powers, and substrate temperatures. Variations in surface morphology, optical properties, and film resistances were measured and analyzed. It is shown that a very low value of sheet resistance (1.96 ω/sq.) can be achieved with suitable arrangement of the deposition experiments. First, at constant RF power, deposition at different pressure values is done, and the condition for achieving minimum sheet resistance (26.43 ω/sq.) is found. In the next step, different values of RF powers are tried, while keeping the pressure fixed on the previously found minimum point (1-2 Pa). Finally,...
Comparative assessment of gasification based coal power plants with various CO2 capture technologies producing electricity and hydrogen
, Article Energy and Fuels ; Volume 28, Issue 2 , 20 February , 2014 , Pages 1028-1040 ; ISSN: 08870624 ; Kumar, P ; Hosseini, A ; Yang, A ; Fennell, P ; Sharif University of Technology
2014
Abstract
Seven different types of gasification-based coal conversion processes for producing mainly electricity and in some cases hydrogen (H2), with and without carbon dioxide (CO2) capture, were compared on a consistent basis through simulation studies. The flowsheet for each process was developed in a chemical process simulation tool "Aspen Plus". The pressure swing adsorption (PSA), physical absorption (Selexol), and chemical looping combustion (CLC) technologies were separately analyzed for processes with CO2 capture. The performances of the above three capture technologies were compared with respect to energetic and exergetic efficiencies, and the level of CO2 emission. The effect of air...
Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method
, Article Materials Letters ; Volume 63, Issue 5 , 2009 , Pages 543-546 ; 0167577X (ISSN) ; Honarmandi, P ; Ebrahimi Kahrizsangi, R ; Honarmandi, P ; Sharif University of Technology
2009
Abstract
Single-crystal hydroxyapatite (HAp) nanorods and nanogranules have been synthesized successfully by a mechanochemical process using two distinct experimental procedures. The experimental outcomes are characterized by transmission electron microscopy (TEM), and powder X-ray diffraction (XRD) techniques. In this work, the feasibility of using polymeric milling media to prepare hydroxyapatite nanoparticles is described. The resulting hydroxyapatite powder exhibits an average size of about 20 to 23 nm. Final results indicate that the proposed synthesis strategy provides a facile pathway to obtain single-crystal HAp with high quality and suitable morphology. © 2008 Elsevier B.V. All rights...
Migrating to Cloud-Native architectures using microservices: An experience report
, Article Workshops on CLIoT, WAS4FI, SeaClouds, CloudWay, IDEA, FedCloudNet 2015 held in conjunction with European Conference on Service-Oriented and Cloud Computing, ESOCC 2015, 15 September 2015 through 17 September 2015 ; Volume 567 , 2016 , Pages 201-215 ; 18650929 (ISSN); 9783319333120 (ISBN) ; Heydarnoori, A ; Jamshidi, P ; Celesti A ; Leitner P ; Sharif University of Technology
Springer Verlag
2016
Abstract
Migration to the cloud has been a popular topic in industry and academia in recent years. Despite many benefits that the cloud presents, such as high availability and scalability, most of the on-premise application architectures are not ready to fully exploit the benefits of this environment, and adapting them to this environment is a non-trivial task. Microservices have appeared recently as novel architectural styles that are native to the cloud. These cloud-native architectures can facilitate migrating on-premise architectures to fully benefit from the cloud environments because non-functional attributes, like scalability, are inherent in this style. The existing approaches on cloud...
Study the effect of connectivity between two wells on secondary recovery efficiency using percolation approach
, Article 15th European Conference on the Mathematics of Oil Recovery, ECMOR 2016, 29 August 2016 through 1 September 2016 ; 2016 ; 9462821933 (ISBN); 9789462821934 (ISBN) ; Masihi, M ; King, P. R ; Gago, P. A ; Sharif University of Technology
European Association of Geoscientists and Engineers, EAGE
2016
Abstract
Estimating available hydrocarbon to be produced during secondary oil recovery is an ongoing activity in field development. The primary plan is normally scheduled during early stage of field's life through master development plan studies. During this period, due to the lake of certain data, estimation of the field efficiency is usually based on rules of thumb and not detailed field characterization. Hence, there is a great motivation to produce simpler physically-based methodologies. The minimum necessity inputs of percolation approach make it a useful tool for foration performance prediction. This approach enables us to attain a better assessment of the efficiency of secondary recovery...
Modeling of CO2-brine interfacial tension: Application to enhanced oil recovery
, Article Petroleum Science and Technology ; Volume 35, Issue 23 , 2017 , Pages 2179-2186 ; 10916466 (ISSN) ; Abbasi, P ; Baghban, A ; Zargar, G ; Abbasi, P ; Sharif University of Technology
2017
Abstract
Development of reliable and accurate models to estimate carbon dioxide–brine interfacial tension (IFT) is necessary, since its experimental measurement is time-consuming and requires expensive experimental apparatus as well as complicated interpretation procedure. In the current study, feed forward artificial neural network is used for estimation of CO2–brine IFT based on data from published literature which consists of a number of carbon dioxide–brine interfacial tension data covering broad ranges of temperature, total salinity, mole fractions of impure components and pressure. Trial-and-error method is utilized to optimize the artificial neural network topology in order to enhance its...
Improved advection algorithm of computational modeling of free surface flow using structured grids
, Article Computer Methods in Applied Mechanics and Engineering ; Volume 195, Issue 7-8 , 2006 , Pages 775-795 ; 00457825 (ISSN) ; Abdollahi, J ; Homayonifar, P ; Varahram, N ; Davami, P ; Sharif University of Technology
2006
Abstract
In the present study a finite difference method has been developed to model the transient fluid flow and heat transfer. A single fluid has been selected for modeling of mold filling and The SOLA-VOF 3D technique was modified to increase the accuracy of simulation of filling phenomena for shape castings. The model was then evaluated with the experimental methods. Refereeing to the experimental and simulation results a good consistency and the accuracy of the suggested model are confirmed. © 2005 Published by Elsevier B.V