Loading...
Search for: pouraliakbar--h
0.12 seconds

    Study on microstructure and mechanical characteristics of low-carbon steel and ferritic stainless steel joints

    , Article Materials Science and Engineering A ; Vol. 608, issue , 2014 , pp. 35-45 ; ISSN: 09215093 Sarkari Khorrami, M ; Mostafaei, M. A ; Pouraliakbar, H ; Kokabi, A. H ; Sharif University of Technology
    2014
    Abstract
    In this work, examinations on the microstructure and mechanical properties of plain carbon steel and AISI 430 ferritic stainless steel dissimilar welds are carried out. Welding is conducted in both autogenous and using ER309L austenitic filler rod conditions through gas tungsten arc welding process. The results indicate that fully-ferritic and duplex ferritic-martensitic microstructures are formed for autogenous and filler-added welds, respectively. Carbide precipitation and formation of martensite at ferrite grain boundaries (intergranular martensite) as well as grain growth occur in the heat affected zone (HAZ) of AISI 430 steel. It is found that weld heat input can strongly affect grain... 

    Designing of CK45 carbon steel and aisi 304 stainless steel dissimilar welds

    , Article Materials Research ; Vol. 17, issue. 1 , Oct , 2014 , p. 106-114 ; 15161439 Pouraliakbar, H ; Hamedi, M ; Kokabi, A. H ; Nazari, A ; Sharif University of Technology
    2014
    Abstract
    Gas tungsten arc welding of CK45 and AISI304 stainless steel was performed through preparation of different types of samples using ER308L and ERNi-1 wires. Welded samples were studied by different techniques including optical metallography, scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction, hardness measurements and impact test. It was observed that in the buttered specimen, the structure of the weld metal was completely austenitic while the microstructure of unbuttered sample was duplex ferritic-austenitic. M23C6-type carbides were observed within the weld metal of both as-weld specimen types. Effects of different post-weld heat... 

    Predictions of toughness and hardness by using chemical composition and tensile properties in microalloyed line pipe steels

    , Article Neural Computing and Applications ; 2014 Faizabadi, M. J ; Khalaj, G ; Pouraliakbar, H ; Jandaghi, M. R ; Sharif University of Technology
    2014
    Abstract
    Artificial neural networks with multilayer feed forward topology and back propagation algorithm containing two hidden layers are implemented to predict the effect of chemical composition and tensile properties on the both impact toughness and hardness of microalloyed API X70 line pipe steels. The chemical compositions in the forms of "carbon equivalent based on the International Institute of Welding equation (CEIIW)", "carbon equivalent based on the Ito-Bessyo equation (CEPcm)", "the sum of niobium, vanadium and titanium concentrations (VTiNb)", "the sum of niobium and vanadium concentrations (NbV)" and "the sum of chromium, molybdenum, nickel and copper concentrations (CrMoNiCu)", as well... 

    On the Al/Cu Dissimilar Joints Produced Through Simple Cold Compression

    , Article Transactions of the Indian Institute of Metals ; Volume 68, Issue 5 , October , 2015 , Pages 991-998 ; 09722815 (ISSN) Rafie Azad, M ; Ghasemi, A ; Pouraliakbar, H ; Jandaghi, M. R ; Sharif University of Technology
    Springer India  2015
    Abstract
    Dissimilar Al/Cu joints were produced through simple cold compression technique. The influence of different reductions (40, 53 and 66 %) on the joint strength was studied. Also, the effect of heat treatment on the joints’ mechanical characteristics was investigated using a modified miniature shear test. Microscopical examinations by means of optical and scanning electron microscopes were conducted and results confirmed that acceptable joints produced through 53 and 66 % deformations. According to the shear test results, it was revealed that post-weld heat treatment influenced the joint’s strength and caused strength enhancement in the samples which were not subjected to annealing prior to... 

    Microstructure characteristics of GTAW welded joint of a cast Ni 3Al

    , Article Welding in the World ; Volume 53, Issue SPECIAL ISSUE , 2009 , Pages 595-601 ; 00432288 (ISSN) Pouraliakbar, H ; Kokabi, A. H ; Asgari, S ; Kamali, A. R ; Sharif University of Technology
    2009
    Abstract
    A series of samples with different compositions and parameters were welded together. The alloys were based on Ni-8Al-8Cr-l.5Mo-0.01B %wt composition with Zr additions of 1 and 3 %wt. Crack-free full-penetration welds of castable nickel aluminide alloy were performed using autogenous GTAW technique. It was found that Ni-Ni5Zr eutectic was associated with solidification cracks. Alloys were fully dendritic and also, weld metal consisted of columnar and axial dendrites beside the fusion line and in the middle, respectively. Optical and scanning electron microscopy (SEM) techniques were employed to characterize the composition as well as the weld structure. X-Ray diffraction was utilized to... 

    An investigation into welding of 304 stainless steel to a medium carbon steel

    , Article Welding in the World ; Volume 53, Issue SPECIAL ISSUE , 2009 , Pages 575-580 ; 00432288 (ISSN) Pouraliakbar, H ; Nasiri, A. M ; Kokabi, A. H ; Serajzadeh, S ; Sharif University of Technology
    2009
    Abstract
    In this work, fusion welding of CK45 carbon steel and 304 stainless steel was performed using GTAW technique. Both ER308-L and ERNi-1 filler metals with and without buttering conditions were employed. Then, the welded samples were studied utilizing optical metallography, scanning electron microscopy, microhardness, polarization and impact tests. It is observed that in the buttered specimens with nickel wire, the structure of weld metal was completely austenitic while the microstructure of unbuttered one was austenitic-ferritic and also, a carburized region in the weld metal next to the fusion line were observed. Microstructures and microhardness variation in the weld metal after socking at... 

    Chromium carbonitride coating produced on DIN 1.2210 steel by thermo-reactive deposition technique: Thermodynamics, kinetics and modeling

    , Article Surface and Coatings Technology ; Volume 225 , 2013 , Pages 1-10 ; 02578972 (ISSN) Khalaj, G ; Nazari, A ; Khoie, S. M. M ; Khalaj, M. J ; Pouraliakbar, H ; Sharif University of Technology
    2013
    Abstract
    A duplex surface treatment on DIN 1.2210 steel has been developed involving nitriding and followed by chromium thermo-reactive deposition (TRD) techniques. The TRD process was performed in molten salt bath at 550, 625 and 700°C for 1-14h. The process formed a thickness up to 9.5μm of chromium carbonitride coatings on a hardened diffusion zone. Characterization of the coatings by means of scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) indicates that the compact and dense coatings mainly consist of Cr(C,N) and Cr2(C,N) phase. All the growth processes of the chromium carbonitride obtained by TRD technique followed a parabolic kinetics. Activation energy (Q) for the... 

    Constrained groove pressing, cold-rolling, and post-deformation isothermal annealing: Consequences of their synergy on material behavior

    , Article Materials Chemistry and Physics ; Volume 206 , 2018 , Pages 85-93 ; 02540584 (ISSN) Pouraliakbar, H ; Jandaghi, M. R ; Heidarzadeh, A ; Jandaghi, M. M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Stress-relieved Al-Mn-Si specimens were constrained groove pressed (CGPed) and in the following, cold-rolled under different strains of 0.47, 0.8 and 1.27. Dual strained sheets were isothermally heat treated at 150, 250, and 350 °C. Microstructure survey revealed that generated shear-bands by CGP acted as talent sites for further strain-induced grain boundary migration (SIGBM) during annealing. SEM micrographs pointed out that coarse particles (1 μm <) had not preferential positions within the aluminum matrix and often comminuted into fine dispersoids (0.5 μm >) under heavy strains. Assessment of the softening fraction (Rrec) depicted that greater accumulated strains along with higher... 

    Predicting Charpy impact energy of Al6061/SiCp laminated nanocomposites in crack divider and crack arrester forms

    , Article Ceramics International ; Volume 39, Issue 6 , 2013 , Pages 6099-6106 ; 02728842 (ISSN) Pouraliakbar, H ; Nazari, A ; Fataei, P ; Livary, A. K ; Jandaghi, M ; Sharif University of Technology
    2013
    Abstract
    Charpy impact energy of the produced Al6061-SiCp laminated nanocomposites by mechanical alloying was modeled by adaptive neuro-fuzzy interfacial systems (ANFIS) in both crack divider and crack arrester configurations. The model was constructed by training, validating and testing of 171 gathered input-target data. The thickness of layers, the number of layers, the adhesive type, the crack tip configuration and the content of SiC nanoparticles were five independent input parameters utilized for modeling. The output parameter was Charpy impact energy of the nanocomposites. The performance of the proposed models was evaluated by absolute fraction of variance, the absolute percentage error and... 

    Predicting the ultimate grain size of aluminum sheets undergone constrained groove pressing

    , Article International Journal of Advanced Manufacturing Technology ; Volume 86, Issue 5-8 , 2016 , Pages 1639-1658 ; 02683768 (ISSN) Pouraliakbar, H ; Firooz, S ; Jandaghi, M. R ; Khalaj, G ; Nazari, A ; Sharif University of Technology
    Springer-Verlag London Ltd  2016
    Abstract
    The grain size of constrained groove pressed aluminum has been predicted through the genetic programming approach. “Sheet thickness,” “elongation,” “yield strength,” “ultimate tensile strength,” “total strain,” and “hardness,” along with “primary grain size” of the ultrafine-grained sheets were utilized as input parameters to obtain the ultimate grain size. A total number of 73 available data in the literature were gathered and randomly divided into 60 and 13 sets for algorithm training and testing, respectively. Among the presented models, the one with best performance utilized parameters of total strain, ultimate tensile strength, and primary grain size with 40 chromosomes, 10 head sizes,... 

    Study on the dynamic and static softening phenomena in Al-6Mg alloy during two-stage deformation through interrupted hot compression test

    , Article Measurement: Journal of the International Measurement Confederation ; Volume 77 , 2016 , Pages 50-53 ; 02632241 (ISSN) Pouraliakbar, H ; Pakbaz, M ; Firooz, S ; Jandaghi, M. R ; Khalaj, G ; Sharif University of Technology
    Elsevier, B. V  2016
    Abstract
    The dynamic and static softening phenomena in Al-6Mg alloy were studied through interrupted two-stage hot compression test performed isothermally at 480°C and strain rate range of 0.001-0.1 s-1. The interruptions of 29 and 90 s were considered when the true strain reached 0.5. It was concluded that the effect of static softening on the flow stress was not highlighted by extending the interruption at a constant strain rate. Also, it was exhibited that softening rate highly enhanced with the strain rate decrement at a constant time. Moreover, the static and dynamic recrystallization was revealed as the dominant softening mechanisms at low and high strain rates, respectively  

    Toughness prediction in functionally graded Al6061/SiCp composites produced by roll-bonding

    , Article Ceramics International ; Vol. 40, issue. 6 , 2014 , pp. 8809-8825 Pouraliakbar, H ; Hosseini Monazzah, A ; Bagheri, R ; Seyed Reihani, S. M ; Khalaj, G ; Nazari, A ; Jandaghi, M. R ; Sharif University of Technology
    2014
    Abstract
    Functionally graded aluminum matrix composites (FGAMC) are new advanced materials with promising applications due to their unique characteristics in which composite nature is combined with graded structure. Different architectures of Al6061/SiCp composite laminates were fabricated by successive hot roll-bonding. For FGAMCs, two composite layers as outer strips and a layer of Al1050 as interlayer were applied. To investigate laminate toughness, the quasi-static three-point bending test was conducted in the crack divider orientation. Genetic programming as a soft computing technique was implemented to find mathematical correlations between architectural parameters and experimentally obtained... 

    Nonlinear interstory drift contours for idealized forward directivity pulses using "modified fish-bone" models

    , Article Advances in Structural Engineering ; Volume 18, Issue 5 , May , 2015 , Pages 603-627 ; 13694332 (ISSN) Khalo, A. R ; Khosravi, H ; Jamnani, H. H ; Sharif University of Technology
    Multi-Science Publishing Co. Ltd  2015
    Abstract
    Four 5-, 10-, 20- and 30-story moment frames, representing low-, mid-, and two high-rise structures, were subjected to a great number of idealized directivity pulses. The amplitudes and periods of pulses vary from 0.02 g to 1.0 g and 0.5 to 12 sec, respectively. Over 1400 nonlinear dynamic analyses of low- to high-rise moment frames were performed which were feasible through using modified fish-bone model. The distribution of interstory drift along the height was studied and two applied contours were proposed: (i) the maximum interstory drift contour, and (ii) the critical story contour. These contours were demonstrated versus the ratio of natural period of the structure to the pulse period... 

    Analysis of singularities of a 3DOF parallel manipulator based on a novel geometrical method

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Pendar, H ; Sadeghian, H ; Roozbehani, H ; Zohoor, H ; Sharif University of Technology
    2006
    Abstract
    In this article singular points of a parallel manipulator are obtained based on a novel geometrical method. Here we introduce the constrained plain method (CPM) and some of its application in parallel mechanism. Given the definition of constraint plane (CP) and infinite constraint plane (ICP) the dependency conditions of constraints is achieved with the use of a new theorem based on the Ceva geometrical theorem. The direction of angular velocity of a body is achieved by having three ICPs with the use of another theorem. Finally, with the use of the above two novel theorems singularities of the 3UPF_PU mechanism are obtained. It should be emphasized that this method is completely geometrical,... 

    Melting enthalpy and entropy of freestanding metallic nanoparticles based on cohesive energy and average coordination number

    , Article Journal of Physical Chemistry C ; Volume 115, Issue 35 , August , 2011 , Pages 17310-17313 ; 19327447 (ISSN) Omid, H ; Delavari H., H ; Madaah Hosseini, H. R ; Sharif University of Technology
    2011
    Abstract
    An analytical model is proposed to study the effect of particle size on melting enthalpy and entropy of metallic nanoparticles (NPs). The Mott's and Regel's equations for melting entropy in the combination of core average coordination number (CAC) and surface average coordination number (SAC) of freestanding NPs are considered. Clusters of icosahedral (IC), body centered cubic (BCC), and body centered tetragonal (BCT) structure without any vacancies and defects are modeled. Using the variable coordination number made this model to be in good agreement with experimental and molecular dynamic (MD) results of different crystal structures. The model predicts melting entropy and enthalpy of... 

    On the temperature and residual stress field during grinding

    , Article WCE 2010 - World Congress on Engineering 2010, 30 June 2010 through 2 July 2010 ; Volume 2 , 2010 , Pages 1196-1200 ; 9789881821072 (ISBN) H-Gangaraj, S. M ; Farrahi, G. H ; Ghadbeigi, H ; Sharif University of Technology
    2010
    Abstract
    Grinding is widely used for manufacturing of components that require fine surface finish and good dimensional accuracy. In this study a thermo-mechanical finite element analysis is conducted to find out how grinding parameters can affect temperature and residual stress distribution in the workpiece. Results of parametric study presented in this work indicate, by carefully selecting the grinding parameters, minimum thermal and mechanical damage can be achieved. Higher workpiece velocities produce higher surface residual stress. By increasing depths of cut, depth of tensile residual stresses increases. Convection heat coefficient does not have any considerable effect on surface residual stress... 

    A new lattic LP-based post filter for adaptive noise cancellers in mobile and vehicular applications

    , Article Proceedings of the 8th IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2008, 16 December 2008 through 19 December 2008, Sarajevo ; 2008 , Pages 407-412 ; 9781424435555 (ISBN) Khorram, S ; Sameti, H ; Veisi, H ; Abutalebi, H. R ; Sharif University of Technology
    2008
    Abstract
    Adaptive Noise Cancellation (ANC) is a well-known technique for background noise reduction in automobile and vehicular environments. The noise fields in automobile and other vehicle interior obey the diffuse noise field model closely. On the other hand, the ANC does not provide sufficient noise reduction in the diffuse noise fields. In this paper, a new multistage post-filter is designed for ANC as a solution to diffuse noise conditions. The designed post-filter is a single channel Linear Prediction (LP) based speech enhancement system. The LP is performed by an adaptive lattice filter and attempts to extract speech components by using intermediate ANC signals. The post-filter has no... 

    Finite element analysis of shot-peening effect on fretting fatigue parameters

    , Article Tribology International ; Volume 44, Issue 11 , 2011 , Pages 1583-1588 ; 0301679X (ISSN) H-Gangaraj, S. M ; Alvandi Tabrizi, Y ; Farrahi, G. H ; Majzoobi, G. H ; Ghadbeigi, H ; Sharif University of Technology
    2011
    Abstract
    Shot peening is widely used to improve the fretting fatigue strength of critical surfaces. Fretting fatigue occurs in contacting parts that are subjected to fluctuating loads and sliding movements at the same time. This paper presents a sequential finite element simulation to investigate the shot peening effects on normal stress, shear stress, bulk stress and slip amplitude, which are considered to be the controlling parameters of fretting damage. The results demonstrated that among the modifications related to shot peening, compressive residual stress has a dominant effect on the fretting parameters  

    Mechanically activated synthesis of single crystalline MgO nanostructures

    , Article Journal of Alloys and Compounds ; Volume 506, Issue 2 , September , 2010 , Pages 715-720 ; 09258388 (ISSN) Nusheh, M ; Yoozbashizadeh, H ; Askari, M ; Kobatake, H ; Fukuyama, H ; Sharif University of Technology
    2010
    Abstract
    One-dimensional (1D) MgO structures were successfully synthesized via carbothermic reduction of mechanically activated mixture of MgO and graphite. Mechanical activation of source materials before carbothermic reduction can substantially enhance the formation of MgO products at a temperature (1000 °C) relatively lower than that required in previous approaches (≥1200 °C). However, the morphology of MgO formed is dependent on the degree of mechanical activation and the condition of the subsequent carbothermic reduction. Two distinctive morphologies were found for MgO products synthesized using our method: single crystalline nanorods with rectangular cross-sections whose diameters range from 50... 

    Boundary control design for vibration suppression and attitude control of flexible satellites with multi-section appendages

    , Article Acta Astronautica ; Volume 173 , 2020 , Pages 22-30 Ataei, M. M ; Salarieh, H ; Nejat Pishkenari, H ; Jalili, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Attitude and vibration control of a general form of flexible satellites is addressed in this paper. Partial differential dynamic equations are derived considering new details such as multi sectioned solar panels and elastic connections between main hub and solar panels. Boundary control approach is adopted to eliminate simplification errors of discrete models, using just one actuator in the hub. Asymptotic stability of attitude dynamics is proved for a group of boundary controllers and necessary conditions for asymptotic stability of vibrations are discussed. Being independent of modeling accuracy and using easily measurable feedbacks are among advantages of the proposed class of...