Loading...
Search for: pourfath--mahdi
0.112 seconds

    Design and Simulation of Spin Transport in Graphene Based Nanostructures

    , Ph.D. Dissertation Sharif University of Technology Chaghazardi, Zahra (Author) ; Faez, Rahim (Supervisor) ; Pourfath, Mahdi (Co-Advisor)
    Abstract
    Graphene -a two-dimensional monolayer of graphite- was realized for the first time in 2004.Owing to its physical extra ordinary properties, graphene has attracted growing interest in research from fundamental physics to electronics, spintronics, and thermoelectrics. Importantly, it is an attractive material for electronics and spintronics due to its specific physical properties such as high electron mobility and gate tunable carrier concentration. Furthermore,achievement of room-temperature spin transport with relatively long spin relaxation time makes graphene nanoribbons the best candidate for spintronics. Based on the theoretical predictions, the weak spin-orbit interaction in graphene... 

    Low-frequency Model for Long-channel Monolayer Transistors

    , Ph.D. Dissertation Sharif University of Technology Omdeh Ghiasi, Hesam (Author) ; Safarian, Amin Ghasem (Supervisor) ; Pourfath, Mahdi (Co-Supervisor)
    Abstract
    Transistors’ miniaturization and advent of short-channel effects causes searching for another devices with least adverse characteristics in short channels. Among all the considered devices, monolayer transistors attracted the attention. Although most of the papers in literature focused on the physical phenomenon of the device, circuit design of these transistors have been overlooked. Most of the papers related to monolayer transistors did not explain the design methodology of their circuits and they confined their work just to the report of the circuits constructed with 2D-based transistors. In order to take advantage of 2D materials in electronic circuits, simple modelling for... 

    Low-Frequency model for hand-calculations in circuit design with TMDC-based transistors

    , Article IEEE Transactions on Electron Devices ; Volume 66, Issue 11 , 2019 , Pages 5011-5018 ; 00189383 (ISSN) Omdeh Ghiasi, H ; Safarian, A ; Pourfath, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    This article presents an applicable intuitive current-voltage model for long-channel transistors based on 2-D materials. This model carefully predicts the transistor behavior in the saturation and triode regions, which are important for analog and digital applications. Moreover, the effect of mobility degradation on the characteristics of the transistor is probed. As a case study, the developed model has been applied to a transistor with mono-layer MoS2 as the channel material. The excellent agreement with experimental data verifies the accuracy of the model. Finally, the introduced model has been utilized to design an amplifier, a differential pair, and a low-frequency common source mixer... 

    A computational study of vertical tunneling transistors based on graphene-WS2 heterostructure

    , Article Journal of Applied Physics ; Volume 121, Issue 21 , 2017 ; 00218979 (ISSN) Horri, A ; Faez, R ; Pourfath, M ; Darvish, G ; Sharif University of Technology
    American Institute of Physics Inc  2017
    Abstract
    In this paper, for the first time, we present a computational study on electrical characteristics of field effect tunneling transistors based on a vertical graphene-WS2 heterostructure and vertical graphene nanoribbon (GNR)-WS2 heterostructure (VTGNRFET). Our model uses the nonequilibrium Green's function formalism along with an atomistic tight binding (TB) method. The TB parameters are extracted by fitting the bandstructure to first principles results. We show that, due to the advantage of switching between tunneling and thermionic transport regimes, an improvement can be achieved in the electrical characteristics of the device. We find that the increase of the number of WS2 layers enhances... 

    Modeling of a vertical tunneling transistor based on graphene-mos2 heterostructure

    , Article IEEE Transactions on Electron Devices ; Volume 64, Issue 8 , 2017 , Pages 3459-3465 ; 00189383 (ISSN) Horri, A ; Faez, R ; Pourfath, M ; Darvish, G ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    In this paper, for the first time, we present a computational study on the electrical behavior of the field-effect tunneling transistor based on vertical graphene-MoS2 heterostructure and vertical graphene nanoribbon-MoS2 heterostructure. Our simulation is based on nonequilibrium Green's function formalism along with an atomistic tight-binding (TB) model. The TB parameters are obtained by fitting the bandstructure to first-principle results. By using this model, electrical characteristics of device, such as I ON/I OFF ratio, subthreshold swing, and intrinsic gate-delay time, are investigated. We show that the combination of tunneling and thermionic transport allows modulation of current by... 

    Spin relaxation in graphene nanoribbons in the presence of substrate surface roughness

    , Article Journal of Applied Physics ; Volume 120, Issue 5 , 2016 ; 00218979 (ISSN) Chaghazardi, Z ; Babaee Touski, Sh ; Pourfath, M ; Faez, R ; Sharif University of Technology
    American Institute of Physics Inc  2016
    Abstract
    In this work, spin transport in corrugated armchair graphene nanoribbons (AGNRs) is studied. We survey combined effects of spin-orbit interaction and surface roughness, employing the non-equilibrium Green's function formalism and multi-orbitals tight-binding model. Rough substrate surfaces have been statistically generated and the hopping parameters are modulated based on the bending and distance of corrugated carbon atoms. The effects of surface roughness parameters, such as roughness amplitude and correlation length, on spin transport in AGNRs are studied. The increase of surface roughness amplitude results in the coupling of σ and π bands in neighboring atoms, leading to larger spin... 

    Spin FET based on graphene nanoribbon in the presence of surface roughness

    , Article IEEE Transactions on Electron Devices ; Volume 64, Issue 8 , 2017 , Pages 3437-3442 ; 00189383 (ISSN) Chaghazardi, Z ; Faez, R ; Babaee Touski, S ; Pourfath, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    In this paper, the characteristics of an armchair graphene nanoribbon spin FET (SFET) are investigated in the presence and absence of surface roughness, by employing a multiorbital tight-binding method along with the nonequilibrium Green's function approach. It is found that the bandgap monotonically decreases with increasing the vertical electric field, since Stark effect enhances spin-flip rate under a high vertical electric field. Furthermore, spin transport in the presence of a random potential, which is induced by the concurrent effect of the applied vertical electric field and surface roughness, is carefully analyzed. This random potential strongly scatters carriers and reduces spin... 

    Engineering enhanced thermoelectric properties in zigzag graphene nanoribbons

    , Article Journal of Applied Physics ; Volume 111, Issue 5 , 2012 ; 00218979 (ISSN) Karamitaheri, H ; Neophytou, N ; Pourfath, M ; Faez, R ; Kosina, H ; Sharif University of Technology
    2012
    Abstract
    We theoretically investigate the thermoelectric properties of zigzag graphene nanoribbons in the presence of extended line defects, substrate impurities, and edge roughness along the nanoribbon's length. A nearest-neighbor tight-binding model for the electronic structure and a fourth nearest-neighbor force constant model for the phonon bandstructure are used. For transport, we employ quantum mechanical non-equilibrium Green's function simulations. Starting from the pristine zigzag nanoribbon structure that exhibits very poor thermoelectric performance, we demonstrate how after a series of engineering design steps the performance can be largely enhanced. Our results could be useful in the... 

    MBBR and MBR Reactor Configuration for Better Performance

    , M.Sc. Thesis Sharif University of Technology (Author) ; Borgheei, Mahdi (Supervisor)
    Abstract
    Membrane bioreactors (MBRs) which are commonly understood as the combination of membrane filtration and biological treatment using activated sludge have several advantages, but membrane fouling reduces the membrane efficiency, permeability and lifetime. An alternative is replacing a moving bed biofilm reactor (MBBR) with the activated sludge system which may reduce the effect of membrane fouling. The sludge produced in MBBRs has poor settling characteristics, therefore, their efficiency is limited by the sedimentation tank performance and they require a larger settling surface. The combination of moving bed biofilm reactors and membrane bioreactors can compensate for the drawbacks of both of... 

    Hydrogenated graphene oxide (H-G-SiO2) Janus structure: Experimental and computational study of strong piezo-electricity response

    , Article Journal of Physics D: Applied Physics ; Volume 53, Issue 17 , 2020 Bidmeshkipour, S ; Alidoosti, M ; Hosseinzadeh, A ; Seyyedi, S. M. S ; Elahi, M ; Pourfath, M ; Mohajerzadeh, S ; Sharif University of Technology
    Institute of Physics Publishing  2020
    Abstract
    We have investigated the piezoelectric response of the hydrogenated graphene oxide (H-G-SiO2) stacks both experimentally and theoretically. The piezoresponse force microscopy method and density-functional theory (DFT) calculations were used to study the piezoresponse effect of this structure from both experimental and computational point of views. A mono-layer graphene, made by chemical vapour deposition method, is deposited on Si/SiO2 substrate and its surface is then functionalized with hydrogen atoms. The vertical piezoresponse, observed by piezoresponse force microscopy, is measured to be about 2146 pC N-1, that is comparable to the reported state of the art piezoelectric materials such... 

    Forecasting the effects of a Canada-US currency union on output and prices: A counterfactual analysis

    , Article Journal of Forecasting ; Volume 32, Issue 7 , 2013 , Pages 639-653 ; 02776693 (ISSN) Mahdi Barakchian, S ; Sharif University of Technology
    2013
    Abstract
    This paper is a counterfactual analysis investigating the consequences of the formation of a currency union for Canada and the USA: whether outputs increase and prices decrease if these countries form a currency union. We use a two-country cointegrated model to conduct the counterfactual analysis, where the conditional forecasts are generated based on the Gaussian assumption. To deal with structural breaks and model uncertainty, conditional forecasts are generated from different models/estimation windows and the model-averaging technique is used to combine the forecasts. We also examine the robustness of our results to parameter uncertainty using the wild bootstrap method. The results show... 

    Evaluation of Non-linear Combination Method (Neural Network) For Value-at-Risk Forecasting in Market

    , M.Sc. Thesis Sharif University of Technology Rashnavadi, Leila (Author) ; Barakchian, Mahdi (Supervisor)
    Abstract
    Value at risk of an asset, is the asset’s expected maximum loss for a certain period of time and at a specified confidence level. Value-at-Risk can be calculated in the bank with its inter-nal method or standardized method. when a method have more violation number then bank need to keep more daily capital requirements. under the Basel 2 agreement if the violation of method more than 10 times in year, the Bank uses the standardized method.
    There are trade off Between daily capital charge and violations. Therefore, existing methods for calculating the value at risk, usually lead to much daily capital charge or many violations. Studies show with combination of different methods to calculate... 

    Using Complex Network Metrics for Evaluating the Influence of Conference and Journal Papers in Computer Science

    , M.Sc. Thesis Sharif University of Technology Habibi, Fatemeh (Author) ; Jalili, Mahdi (Supervisor)
    Abstract
    Journals and conferences in computer science are the major venue for publishing new achievement in the field. It is an expert opinion that a number of top conferences in computer science are even more important than journals. In this work we aim at studying this in terms of citation analysis. To this end, we took 100 top journals and 63 top conferences and extracted their citation graph through Scopus dataset. We then constructed the citation graph in which the nodes were the journals and conferences and the links corresponded to the citations of the papers. We used various measures to rank the nodes in the graph. The ranking methods included Prestige, PageRank, Eigenfactor, HITS and SALSA.... 

    Design and Implementation of a VLSI Architecture for Time and Frequency Synchronization in the LTE

    , M.Sc. Thesis Sharif University of Technology Golnari, Amene (Author) ; Shabany, Mahdi (Supervisor)
    Abstract
    The long term evolution (LTE) standard is introduced and developed by the 3rd generation partnership project (3GPP) based on orthogonal frequency division multiplexing (OFDM). OFDM systems, in spite of having many advantages such high performance in bandwidth usage, are very sensitive to inter carrier interference (ICI) as a drawback. In order to prevent ICI, the frequency offset, mainly caused by the miss-match between oscillators' frequency and also between the sampling frequency of the transmitter and the receiver, should be estimated and compensated. Frequency synchronization is a part of the tasks of a synchronizer. In this thesis, main tasks of a synchronizer are illustrated and... 

    A New Approach in Value-at-Risk (VaR) Estimation by Forecast Combination Methods

    , M.Sc. Thesis Sharif University of Technology Seraj, Mostafa (Author) ; Barakchian, Mahdi (Supervisor)
    Abstract
    Value-at-Risk (VaR) is the most commontool for risk management. This tool is used to measure market risk and also used as a basis in determining financial standards for international financial institutions. VaR is the maximum loss of the asset portfolio at the specified confidence level and certain time horizon. Many parametric, nonparametric and semi parametric methods have been invented for VaR estimation. Each one of these methods has its advantages and disadvantages and different methods may perform better in differnet situations.When estimating VaR, we can choose one of these methods or we can combine the VaRs estimated by different methods. There are few researches conducted on VaR... 

    EEG Brain Functional Network Analysis in Cortex Level

    , M.Sc. Thesis Sharif University of Technology Pedrood, Bahman (Author) ; Jalili, Mahdi (Supervisor)
    Abstract
    Complex networks science have received tremendous attention in recent years and the brain is one of the systems to which graph theoretical tools have been applied. Alzheimer’s disease (AD) is a neurodegenerative disease affecting many of elderly population. AD changes the anatomy of the brain, which subsequently results in changes in its functions. These changes have been frequently reported in signals recorded from the brain (such as MEG, fMRI and EEG). Among these neuroimaging techniques EEG is one of the most aproprate methods for extracting functional connectivites according to high temporal resolution. In this thesis, we aimed at analyzing the properties of EEG-based functional networks... 

    Learning Improvement in Phase Oscillator Models

    , M.Sc. Thesis Sharif University of Technology Aghighi, Meysam (Author) ; Jalili, Mahdi (Supervisor)
    Abstract
    In the recent years, the problem of modeling a cognitive task using phase oscillators has been receiving a significant attention. In this view, single neurons are no longer elementary computational units. Rather, coherent oscillating groups of neurons are seen as nodes of networks performing cognitive tasks. From this assumption, we develop a model of stimulus-response learning and recognition. The most significant part of our work is defining learning methods for natural frequencies and coupling weights in a coupled phase oscillator network under Kuramoto conditions. In this thesis, we improved the previous models by not only emphasizing on the frequency of the oscillators but also taking... 

    Evaluation of Caviar Models Incorporated with Intraday Information ,the Case Study:Estimation Value at Risk of Gold

    , M.Sc. Thesis Sharif University of Technology Karimi, Parvane (Author) ; Barakchian, Mahdi (Supervisor)
    Abstract
    Value at risk (VaR) is the maximum loss of the asset portfolio at the specified confidence level and certain time horizon. This tool is used to measure market risk and also used as a basis in determining financial standards for international financial instituation. Conditional Autoregressive Value at Risk models or CAViaR models introduced by Engle and Manganelli (2004). This models calculate VaR base on quantile regession approach and show some promising performance properties.
    In order to propose a more accurate model for calcutating VaR , we develop CAViaR models by incorporating them with intraday information then we calculate VaR with this kind of models and CAViaR... 

    Design and Implementation of a Spectrum Sensor for Cognitive Radio

    , M.Sc. Thesis Sharif University of Technology Safavi, Mahya (Author) ; Shabani, Mahdi (Supervisor)
    Abstract
    Frequency scarcity has emerged the necessity of opportunistic utilization of frequency bands, which can be realized through a cognitive radio system. During an agile communication between unlicensed users, a cognitive radio system must avoid collision with licensed users. Hence it should continuously observe the band of interest and report the presence of licensed user signals. This task is fulfilled by a vital part of a cognitive radio system, called the spectrum sensing core. Recently several techniques have been proposed for the spectrum sensing in literature. Some of them like matched filtering, cyclostationarity based detection are based on primary user signal features. However energy... 

    VLSI Architecture of Turbo Decoder for LTE

    , M.Sc. Thesis Sharif University of Technology Ardakani, Arash (Author) ; Shabany, Mahdi (Supervisor)
    Abstract
    Long Term Evolution (LTE) aims the peak data rates in excess of 300 Mb/s, which may appear to be challenging to achieve due to the existence of some blocks such as the turbo decoder. One efficient approach to achieve this throughput is by parallelizing the Log Maximum a Posteriori (MAP) algorithm in the turbo decoder. In fact, the interleaver is known to be a major challenging part of the turbo decoder due to its need to the parallel interleaved memory access. LTE uses Quadratic Permutation Polynomial (QPP) interleaver, which makes it suitable for the parallel decoding. In this thesis, first, we propose an efficient architecture for the QPP interleaver, called the Add-Compare-Select (ACS)...