Loading...
Search for: pourreza--m
0.214 seconds

    Visibility testing and counting

    , Article Information Processing Letters ; Volume 115, Issue 9 , September , 2015 , Pages 649-654 ; 00200190 (ISSN) Alipour, S ; Ghodsi, M ; Zarei, A ; Pourreza, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    For a set of n disjoint line segments S in R2, the visibility testing problem (VTP) is to test whether the query point p sees a query segment s∈S. For this configuration, the visibility counting problem (VCP) is to preprocess S such that the number of visible segments in S from any query point p can be computed quickly. In this paper, we solve VTP in expected logarithmic query time using quadratic preprocessing time and space. Moreover, we propose a (1+δ)-approximation algorithm for VCP using at most quadratic preprocessing time and space. The query time of this method is Oε (1/δ 2√n) where Oε (f(n))=O(f(n)nε) and ε>0 is an arbitrary constant number  

    Simple and efficient method to measure vessel tortuosity

    , Article Proceedings of the 3rd International Conference on Computer and Knowledge Engineering, ICCKE 2013, Mashhad: Iran ; 2013 , Pages 219-222 ; 9781479920921 (ISBN) Pourreza, H. R ; Pourreza, M ; Banaee, T ; Sharif University of Technology
    2013
    Abstract
    Retinal vessels tortuosity is one of the important signs of cardiovascular diseases such as diabetic retinopathy and hypertension. In this paper we present a simple and efficient algorithm to measure the grade of tortuosity in retinal images. This algorithm consists of four main steps,vessel detection, extracting vascular skeleton via thinning, detection of vessel crossovers and bifurcations and finally calculating local and global tortuosity. The last stage is based on a circular mask that is put on every skeleton point of retinal vessels. While the skeleton of vessel splits the circle in each position, the local tortuosity is considered to be the bigger to smaller area ratio. The proposed... 

    Engineered cost-effective growth of Co-based nanoflakes as a sustainable water oxidation electrocatalyst

    , Article Journal of Physics D: Applied Physics ; Volume 50, Issue 47 , 2017 ; 00223727 (ISSN) Pourreza, M ; Naseri, N ; Sharif University of Technology
    2017
    Abstract
    Developing low-cost, scalable and reproducible synthesis methods for water oxidation reaction (WOR) catalysts is highly desirable and also challenging in energy, environmental and industrial applications. In this context, electrochemical deposition is known as an easy and cost-effective technique in nanomaterial growth. Herein, cobalt-based nanoflakes were grown on a flexible and commercially available steel mesh substrate by electrodeposition approach with a crystalline structure as a mixture of oxide, hydroxide and oxyhydroxide phases. For the first time, the correlation between electrodeposition parameters, time and current density, and morphological characteristics of the grown... 

    Optimizing Co Nanoflakes Growth Parameters and Modifying Their Electro-catalytic Performance Using Carbon Nanostructures for Water Oxidation Reaction

    , M.Sc. Thesis Sharif University of Technology Pourreza, Mohammad (Author) ; Naseri, Naimeh (Supervisor)
    Abstract
    Ease of solar hydrogen production using water splitting and its environmental benefits, distinct hydrogen from other energy carriers. Hydrogen is the most abundant material in the world that make up more than 90% of the world compounds. So applying this material as a clean fuel is the best way to prevent environmental problems caused by fossil fuels. For efficient hydrogen production from water, a suitable electrocatalyst with low overpotential, high mechanical strength and reasonable catalytic activity must be utilized. In this research, cobalt based electrocatalyst was used considering that electrodepositon conditions play an important role in its final efficiency. On the other hand,... 

    Analysis and Optimization of Architectural Quality Requirements for Federated Clouds

    , M.Sc. Thesis Sharif University of Technology Pourreza, Maryam (Author) ; Habibi, Jafar (Supervisor)
    Abstract
    Proposing a comprehensive architecture for cloud federation with the aim of satisfying stakeholders the most, is one of the most challenging issues in this context. For an architecture to be comprehensive, requirements should be elicited thoroughly in early stages of architecture design. Since covering all requirements is a very complicated task, prioritization is considered to be a vital step which can help architects to focus on more important requirements in their design as well as to evaluate existing architectures. In this research, architecturally signifcant quality requirements of cloud federation for aggregated cloud architectures are studied and categorized. Moreover, elicited... 

    Sustainable starfish like cobalt electrocatalyst grown on optimized CNT-graphene hybrid host for efficient water oxidation

    , Article Applied Surface Science ; Volume 524 , 15 September , 2020 Naseri, N ; Ghasemi, S ; Pourreza, M ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Solar energy generation is one of the most efficient approach to solve emerging environment and energy challenges. In this context, solar assisted dissociation of water into oxygen and hydrogen utilizing scalable and high performance electrocatalysts plays key role since the produced hydrogen is a clean energy carrier. Here, cobalt based nanoflakes with metallic core and oxidized surface were grown on the designed carbonaceous layer for anodic oxygen evolution reaction (OER) using an electrochemical approach. Carbonaceous layers containing proper amount of carbon nanotubes (CNT) and reduced graphene oxide (rGO) species were used to optimize the system. Although higher weight percent of rGO... 

    G2D: Generate to detect anomaly

    , Article 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021, 5 January 2021 through 9 January 2021 ; 2021 , Pages 2002-2011 ; 9780738142661 (ISBN) Pourreza, M ; Mohammadi, B ; Khaki, M ; Bouindour, S ; Snoussi, H ; Sabokrou, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    In this paper, we propose a novel method for irregularity detection. Previous researches solve this problem as a One-Class Classification (OCC) task where they train a reference model on all of the available samples. Then, they consider a test sample as an anomaly if it has a diversion from the reference model. Generative Adversarial Networks (GANs) have achieved the most promising results for OCC while implementing and training such networks, especially for the OCC task, is a cumbersome and computationally expensive procedure. To cope with the mentioned challenges, we present a simple but effective method to solve the irregularity detection as a binary classification task in order to make... 

    Highly efficient SO3Ag-functionalized MIL-101(Cr) for adsorptive desulfurization of the gas stream: Experimental and DFT study

    , Article Chemical Engineering Journal ; Volume 363 , 2019 , Pages 73-83 ; 13858947 (ISSN) Pourreza, A ; Askari, S ; Rashidi, A ; Seif, A ; Kooti, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this research, an adsorbent with manifold interplay sites for the adsorption of sulfur components is developed in a silver ion functionalized Cr3+ based metal-organic framework (MIL-101(Cr)-SO3Ag). The adsorption performance of MIL-101(Cr), MIL-101(Cr)-SO3H, and MIL-101(Cr)-SO3Ag was evaluated in dynamic adsorption system in terms of its adsorption capacity. MIL-101(Cr)-SO3Ag could interact with H2S through multiple ways which performed about 4 times higher adsorption capacity (96.75 mg/g) rather than MIL-101(Cr); further, the high adsorption capacity of MIL-101(Cr)-SO3Ag was almost unchanged after five successive adsorption–desorption cycles, making it a potential adsorbent for an... 

    A highly efficient MIL-101(Cr)–Graphene–molybdenum oxide nano composite for selective oxidation of hydrogen sulfide into elemental sulfur

    , Article Journal of Industrial and Engineering Chemistry ; Volume 71 , 2019 , Pages 308-317 ; 1226086X (ISSN) Pourreza, A ; Askari, S ; Rashidi, A ; Fakhraie, S ; Kooti, M ; Shafiei Alavijeh, M ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2019
    Abstract
    Hybrid composites of MIL-101(Cr) and Nanoporous Graphene with ratios in the range of 10–50% were prepared via hydrothermal synthesis method. This study deals with an experimental investigation on selective oxidation of H2S into elemental sulfur in the range of 200–270 °C, the catalyst activity and selectivity toward sulfur was studied. High-temperature reactor tests indicated that the MIL-101(Cr)–NPG50–Mo could be a promising candidate with conversion and selectivity of 100% and 99.5% at 200 °C. The MIL-101(Cr)–NPG50–Mo stability showed there were not any significant changes in physical properties, the activity was evaluated after 20 h which was completely stable without any changes  

    Optimizing carbonaceous nanostructure composition as a substrate to grow co electrocatalysts

    , Article Iranian Journal of Physics Research ; Volume 17, Issue 5 , 2018 , Pages 753-760 ; 16826957 (ISSN) Pourreza, M ; Naseri, N ; Ghasemi, S ; Sharif University of Technology
    Isfahan University of Technology  2018
    Abstract
    Global warming and other adverse environmental effects of fossil fuels have forced humans to consider clean and renewable energy resources. In this context, hydrogen production from water splitting reaction is a key approach. In order to reduce required overpotential for water oxidation reaction, it is necessary to use low cost and earth abundant electrocatalysts like Co, Cu, Fe, Mn, Ni and Zn nanostructures. Herein, cobalt nanostructures on steel-mesh substrate were applied. Electrochemical method was used for growth of Co nanoflakes because of its simplicity and scalability for commercial approach. On the other hand, using carbonaceous support layers including nanomaterials such as... 

    Microstructure, morphology and electrochemical properties of Co nanoflake water oxidation electrocatalyst at micro- and nanoscale

    , Article RSC Advances ; Volume 7, Issue 21 , 2017 , Pages 12923-12930 ; 20462069 (ISSN) Naseri, N ; Solaymani, S ; Ghaderi, A ; Bramowicz, M ; Kulesza, S ; Ţălu, Ş ; Pourreza, M ; Ghasemi, S ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    Nowadays, fossil fuel limitations and environmental concerns push researchers to find clean and renewable energy resources. Solar hydrogen production via water splitting reactions in electrochemical and/or photo-electrochemical systems has been accepted as a promising route and efficient electrocatalysts are involved in both. Here, cobalt nanoflakes with an oxide/hydroxide surface and a conductive metallic core are grown on commercially available steel mesh modified with carbon based nanocomposites as a support layer. The portion of reduced graphene oxide sheets was changed from 0 to 100 wt% and the correlation of this concentration with the surface morphology and electro-catalytic activity... 

    Probability of missed detection as a criterion for receiver placement in MIMO PCL

    , Article IEEE National Radar Conference - Proceedings, 7 May 2012 through 11 May 2012, Atlanta, GA ; 2012 , Pages 0924-0927 ; 10975659 (ISSN) ; 9781467306584 (ISBN) Majd, M. N ; Chitgarha, M. M ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
    IEEE  2012
    Abstract
    Using multiple antennas at the transmit and receive sides of a passive radar brings both the benefits of MIMO radar and passive radar. However one of the obstacles arisen in such configuration is the receive antennas placement in proper positions so that the radar performance is improved. Here we just consider the case of positioning one receiver among multiple illuminators of opportunity. Indeed it is a start for the solution of optimizing the geometry of the multiple receivers in a passive radar  

    An efficient method for the ring opening of epoxides with aromatic amines by Sb(III) chloride under microwave irradiation

    , Article Journal of Chemical Research ; Issue 4 , 2008 , Pages 220-221 ; 03082342 (ISSN) Ghazanfari, D ; Hashemi, M. M ; Mottaghi, M. M ; Foroughi, M. M ; Sharif University of Technology
    2008
    Abstract
    SbCl3 supported on montmorillonite K-10 is an efficient catalyst for the ring opening of epoxides with aromatic amines under solvent-free conditions and microwave irradiation to give the corresponding b-amino alcohols in high yields with high regioselectivity  

    Resource allocation for uav-enabled integrated sensing and communication (isac) via multi-objective optimization

    , Article ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings ; Volume 2023-June , 2023 ; 15206149 (ISSN); 978-172816327-7 (ISBN) Rezaei, O ; Naghsh, M. M ; Karbasi, M ; Nayebi, M. M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2023
    Abstract
    In this paper, we consider an integrated sensing and communication (ISAC) system with wireless power transfer (WPT) where an unmanned aerial vehicle (UAV)-based radar serves a group of energy-limited communication users in addition to its sensing functionality. In this architecture, the radar senses the environment in phase 1 (namely sensing phase) and mean-while, the communications users (nodes) harvest and store the energy from the radar transmit signal. The stored energy is then used for information transmission from the nodes to UAV in phase 2, i.e., uplink phase. Performance of the radar system depends on the transmit signal as well as the receive filter; the energy of the transmit... 

    MIMO radar signal design to improve the MIMO ambiguity function via maximizing its peak

    , Article Signal Processing ; Volume 118 , 2016 , Pages 139-152 ; 01651684 (ISSN) Chitgarha, M. M ; Radmard, M ; Nazari Majd, M ; Karbasi, S. M ; Nayebi, M. M ; Sharif University of Technology
    Elsevier  2016
    Abstract
    One of the important obstacles in MIMO (Multiple Input Multiple Output) radars is the issue of designing proper transmit signals. Indeed, the capability of signal design is a significant advantage in MIMO radars, through which, the system can achieve much better performance. Many different aspects of this performance improvement have been considered yet, and the transmit signals have been designed to attain such goal, e.g., getting higher SNR or better detector's performance at the receiver. However, an important tool for evaluating the radar's performance is its ambiguity function. In this paper, we consider the problem of transmit signal design, in order to optimize the ambiguity function... 

    Detection-localization tradeoff in MIMO radars

    , Article Radioengineering ; Volume 26, Issue 2 , 2017 , Pages 581-587 ; 12102512 (ISSN) Nazari Majd, M ; Radmard, M ; Chitgarha, M. M ; Bastani, M. H ; Nayebi, M. M ; Sharif University of Technology
    2017
    Abstract
    Two gains play key roles in recently developed MIMO wireless communication systems: "spatial diversity" gain and "spatial multiplexing" gain. The diversity gain refers to the capability to decrease the error rate of the MIMO channel, while the multiplexing gain implicitly refers to the amount of increase in the capacity of the MIMO channel. It has been shown that there is a fundamental tradeoff between these two types of gains, meaning interplay between increasing reliability (via an increase in the diversity gain) and increasing data rate (via an increase in the multiplexing gain). On the other hand, recently, MIMO radars have attracted much attention for their superior ability to enhance... 

    Antenna placement and power allocation optimization in MIMO detection

    , Article IEEE Transactions on Aerospace and Electronic Systems ; Vol. 50, Issue 2 , April , 2014 , pp. 1468-1478 Radmard, M ; Chitgarha, M. M ; Majd, M. N ; Nayebi, M. M ; Sharif University of Technology
    2014
    Abstract
    It is a well known fact that using multiple antennas at transmit and receive sides improves the detection performance. However, in such multiple-input multiple-output (MIMO) configuration, proper positioning of transmitters and receivers is a big challenge that can have significant influence on the performance of the overall system. In addition, determining the power of each transmitter under a total power constraint is a problem that should be solved in order to enhance the performance and coverage of such a system. In this paper, we design the Neyman-Pearson detector under the Rayleigh scatter model and use it to introduce a criterion for the antenna placement at both transmit and receive... 

    Ambiguity function of MIMO radar with widely separated antennas

    , Article Proceedings International Radar Symposium ; 16 -18 June , 2014 ; ISSN: 21555753 Radmard, M ; Chitgarha, M. M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
    2014
    Abstract
    There has been much interest, recently, towards exploiting the Multiple-Input Multiple-Output (MIMO) technique in radar. It is shown that using multiple antennas at transmit and receive sides can improve the performance of the system. However, in order to analyze the system's performance, its ambiguity function, i.e. the ambiguity function of a MIMO radar, is needed to be defined. In this paper, beginning from the information theoretic definitions, we derive such function, specifically for a MIMO radar with widely separated antennas  

    Choosing the position of the receiver in a MISO passive radar system

    , Article European Microwave Week 2012: "Space for Microwaves", EuMW 2012, Conference Proceedings - 9th European Radar Conference, EuRAD 2012 ; 2012 , Pages 318-321 ; 9782874870293 (ISBN) Chitgarha, M. M ; Majd, M. N ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
    2012
    Abstract
    By combining the two ideas of MIMO (Multiple Input Multiple Output) and PCL (Passive Coherent Location) in radar, one can achieve the advantages of both recently developed techniques simultaneously. While using multiple antennas at the receive side provides a spatial diversity of the object to be detected, using multiple illuminators of opportunity, most importantly, makes the radar covert to the interceptors. One obstacle in such MIMO configuration is choosing the positions of the receive antennas. In this paper, after analyzing the Neyman-Pearson detector for the DVB-T based PCL, we introduce the probability of missed detection as a criterion to place the receive antenna. Here, we only... 

    Adaptive filtering techniques in passive radar

    , Article Proceedings International Radar Symposium, Dresden ; Volume 2 , June , 2013 , Pages 1067-1078 ; 21555753 (ISSN) ; 9783954042234 (ISBN) Chitgarha, M. M ; Radmard, M ; Majd, M. N ; Nayebi, M. M ; Sharif University of Technology
    2013
    Abstract
    One of the most important obstacles in passive radar applications is removing the direct signal from the target channel. Otherwise, week echoes from the targets in the target channel would be ignored due to the limited dynamic range of the system. One of the most effective techniques in this field is using adaptive filters. In this paper various adaptive filters are introduced and their performances are shown and compared