Loading...
Search for: pourreza--mohammad
0.086 seconds

    Engineered cost-effective growth of Co-based nanoflakes as a sustainable water oxidation electrocatalyst

    , Article Journal of Physics D: Applied Physics ; Volume 50, Issue 47 , 2017 ; 00223727 (ISSN) Pourreza, M ; Naseri, N ; Sharif University of Technology
    2017
    Abstract
    Developing low-cost, scalable and reproducible synthesis methods for water oxidation reaction (WOR) catalysts is highly desirable and also challenging in energy, environmental and industrial applications. In this context, electrochemical deposition is known as an easy and cost-effective technique in nanomaterial growth. Herein, cobalt-based nanoflakes were grown on a flexible and commercially available steel mesh substrate by electrodeposition approach with a crystalline structure as a mixture of oxide, hydroxide and oxyhydroxide phases. For the first time, the correlation between electrodeposition parameters, time and current density, and morphological characteristics of the grown... 

    Optimizing Co Nanoflakes Growth Parameters and Modifying Their Electro-catalytic Performance Using Carbon Nanostructures for Water Oxidation Reaction

    , M.Sc. Thesis Sharif University of Technology Pourreza, Mohammad (Author) ; Naseri, Naimeh (Supervisor)
    Abstract
    Ease of solar hydrogen production using water splitting and its environmental benefits, distinct hydrogen from other energy carriers. Hydrogen is the most abundant material in the world that make up more than 90% of the world compounds. So applying this material as a clean fuel is the best way to prevent environmental problems caused by fossil fuels. For efficient hydrogen production from water, a suitable electrocatalyst with low overpotential, high mechanical strength and reasonable catalytic activity must be utilized. In this research, cobalt based electrocatalyst was used considering that electrodepositon conditions play an important role in its final efficiency. On the other hand,... 

    Analysis and Optimization of Architectural Quality Requirements for Federated Clouds

    , M.Sc. Thesis Sharif University of Technology Pourreza, Maryam (Author) ; Habibi, Jafar (Supervisor)
    Abstract
    Proposing a comprehensive architecture for cloud federation with the aim of satisfying stakeholders the most, is one of the most challenging issues in this context. For an architecture to be comprehensive, requirements should be elicited thoroughly in early stages of architecture design. Since covering all requirements is a very complicated task, prioritization is considered to be a vital step which can help architects to focus on more important requirements in their design as well as to evaluate existing architectures. In this research, architecturally signifcant quality requirements of cloud federation for aggregated cloud architectures are studied and categorized. Moreover, elicited... 

    Optimizing carbonaceous nanostructure composition as a substrate to grow co electrocatalysts

    , Article Iranian Journal of Physics Research ; Volume 17, Issue 5 , 2018 , Pages 753-760 ; 16826957 (ISSN) Pourreza, M ; Naseri, N ; Ghasemi, S ; Sharif University of Technology
    Isfahan University of Technology  2018
    Abstract
    Global warming and other adverse environmental effects of fossil fuels have forced humans to consider clean and renewable energy resources. In this context, hydrogen production from water splitting reaction is a key approach. In order to reduce required overpotential for water oxidation reaction, it is necessary to use low cost and earth abundant electrocatalysts like Co, Cu, Fe, Mn, Ni and Zn nanostructures. Herein, cobalt nanostructures on steel-mesh substrate were applied. Electrochemical method was used for growth of Co nanoflakes because of its simplicity and scalability for commercial approach. On the other hand, using carbonaceous support layers including nanomaterials such as... 

    Simple and efficient method to measure vessel tortuosity

    , Article Proceedings of the 3rd International Conference on Computer and Knowledge Engineering, ICCKE 2013, Mashhad: Iran ; 2013 , Pages 219-222 ; 9781479920921 (ISBN) Pourreza, H. R ; Pourreza, M ; Banaee, T ; Sharif University of Technology
    2013
    Abstract
    Retinal vessels tortuosity is one of the important signs of cardiovascular diseases such as diabetic retinopathy and hypertension. In this paper we present a simple and efficient algorithm to measure the grade of tortuosity in retinal images. This algorithm consists of four main steps,vessel detection, extracting vascular skeleton via thinning, detection of vessel crossovers and bifurcations and finally calculating local and global tortuosity. The last stage is based on a circular mask that is put on every skeleton point of retinal vessels. While the skeleton of vessel splits the circle in each position, the local tortuosity is considered to be the bigger to smaller area ratio. The proposed... 

    Visibility testing and counting

    , Article Information Processing Letters ; Volume 115, Issue 9 , September , 2015 , Pages 649-654 ; 00200190 (ISSN) Alipour, S ; Ghodsi, M ; Zarei, A ; Pourreza, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    For a set of n disjoint line segments S in R2, the visibility testing problem (VTP) is to test whether the query point p sees a query segment s∈S. For this configuration, the visibility counting problem (VCP) is to preprocess S such that the number of visible segments in S from any query point p can be computed quickly. In this paper, we solve VTP in expected logarithmic query time using quadratic preprocessing time and space. Moreover, we propose a (1+δ)-approximation algorithm for VCP using at most quadratic preprocessing time and space. The query time of this method is Oε (1/δ 2√n) where Oε (f(n))=O(f(n)nε) and ε>0 is an arbitrary constant number  

    Sustainable starfish like cobalt electrocatalyst grown on optimized CNT-graphene hybrid host for efficient water oxidation

    , Article Applied Surface Science ; Volume 524 , 15 September , 2020 Naseri, N ; Ghasemi, S ; Pourreza, M ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Solar energy generation is one of the most efficient approach to solve emerging environment and energy challenges. In this context, solar assisted dissociation of water into oxygen and hydrogen utilizing scalable and high performance electrocatalysts plays key role since the produced hydrogen is a clean energy carrier. Here, cobalt based nanoflakes with metallic core and oxidized surface were grown on the designed carbonaceous layer for anodic oxygen evolution reaction (OER) using an electrochemical approach. Carbonaceous layers containing proper amount of carbon nanotubes (CNT) and reduced graphene oxide (rGO) species were used to optimize the system. Although higher weight percent of rGO... 

    Highly efficient SO3Ag-functionalized MIL-101(Cr) for adsorptive desulfurization of the gas stream: Experimental and DFT study

    , Article Chemical Engineering Journal ; Volume 363 , 2019 , Pages 73-83 ; 13858947 (ISSN) Pourreza, A ; Askari, S ; Rashidi, A ; Seif, A ; Kooti, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this research, an adsorbent with manifold interplay sites for the adsorption of sulfur components is developed in a silver ion functionalized Cr3+ based metal-organic framework (MIL-101(Cr)-SO3Ag). The adsorption performance of MIL-101(Cr), MIL-101(Cr)-SO3H, and MIL-101(Cr)-SO3Ag was evaluated in dynamic adsorption system in terms of its adsorption capacity. MIL-101(Cr)-SO3Ag could interact with H2S through multiple ways which performed about 4 times higher adsorption capacity (96.75 mg/g) rather than MIL-101(Cr); further, the high adsorption capacity of MIL-101(Cr)-SO3Ag was almost unchanged after five successive adsorption–desorption cycles, making it a potential adsorbent for an... 

    G2D: Generate to detect anomaly

    , Article 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021, 5 January 2021 through 9 January 2021 ; 2021 , Pages 2002-2011 ; 9780738142661 (ISBN) Pourreza, M ; Mohammadi, B ; Khaki, M ; Bouindour, S ; Snoussi, H ; Sabokrou, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    In this paper, we propose a novel method for irregularity detection. Previous researches solve this problem as a One-Class Classification (OCC) task where they train a reference model on all of the available samples. Then, they consider a test sample as an anomaly if it has a diversion from the reference model. Generative Adversarial Networks (GANs) have achieved the most promising results for OCC while implementing and training such networks, especially for the OCC task, is a cumbersome and computationally expensive procedure. To cope with the mentioned challenges, we present a simple but effective method to solve the irregularity detection as a binary classification task in order to make... 

    A highly efficient MIL-101(Cr)–Graphene–molybdenum oxide nano composite for selective oxidation of hydrogen sulfide into elemental sulfur

    , Article Journal of Industrial and Engineering Chemistry ; Volume 71 , 2019 , Pages 308-317 ; 1226086X (ISSN) Pourreza, A ; Askari, S ; Rashidi, A ; Fakhraie, S ; Kooti, M ; Shafiei Alavijeh, M ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2019
    Abstract
    Hybrid composites of MIL-101(Cr) and Nanoporous Graphene with ratios in the range of 10–50% were prepared via hydrothermal synthesis method. This study deals with an experimental investigation on selective oxidation of H2S into elemental sulfur in the range of 200–270 °C, the catalyst activity and selectivity toward sulfur was studied. High-temperature reactor tests indicated that the MIL-101(Cr)–NPG50–Mo could be a promising candidate with conversion and selectivity of 100% and 99.5% at 200 °C. The MIL-101(Cr)–NPG50–Mo stability showed there were not any significant changes in physical properties, the activity was evaluated after 20 h which was completely stable without any changes  

    Microstructure, morphology and electrochemical properties of Co nanoflake water oxidation electrocatalyst at micro- and nanoscale

    , Article RSC Advances ; Volume 7, Issue 21 , 2017 , Pages 12923-12930 ; 20462069 (ISSN) Naseri, N ; Solaymani, S ; Ghaderi, A ; Bramowicz, M ; Kulesza, S ; Ţălu, Ş ; Pourreza, M ; Ghasemi, S ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    Nowadays, fossil fuel limitations and environmental concerns push researchers to find clean and renewable energy resources. Solar hydrogen production via water splitting reactions in electrochemical and/or photo-electrochemical systems has been accepted as a promising route and efficient electrocatalysts are involved in both. Here, cobalt nanoflakes with an oxide/hydroxide surface and a conductive metallic core are grown on commercially available steel mesh modified with carbon based nanocomposites as a support layer. The portion of reduced graphene oxide sheets was changed from 0 to 100 wt% and the correlation of this concentration with the surface morphology and electro-catalytic activity... 

    Construction of an Experimental Device for Foaming Agent and an Experimental Study of the Properties of Foaming Agent

    , M.Sc. Thesis Sharif University of Technology Mohammad Karami (Author) ; Bazargan, Mohammad (Supervisor)
    Abstract
    The primary purpose of acidizing operations in the oil and gas industry is to enhance hydrocarbon production. Acidizing has been a common and conventional method for years, especially when production engineers face issues like declining reservoir pressure leading to reduced production rates. Initially, the treatment solution is referred to as matrix acidizing. In acidizing operations, different additives are combined with the acid to control its behavior in the reservoir. These additives may include iron control agents, corrosion inhibitors, friction reducers, and more. Incompatibility among these additives, the acid, and reservoir fluids can lead to severe damage to the reservoir.... 

    Numerical Analysis of An Annular Gas Turbine Combustor

    , M.Sc. Thesis Sharif University of Technology Gandomi, Mohammad Hossein (Author) ; Farshchi, Mohammad (Supervisor)
    Abstract
    The goal of this research is the simulation of the annular combustion chamber of the turbine engine utilized by liquid fuel. The achievement to this goal will lead to create numerical tools for parametric study, analysis and combustion chamber designing.For this reason simple geometry has been considered. This simplicity of geometry causes to facilitate in parametric study and decrease in saving time for modeling and meshing. This combustion chamber is a simplified model of engine CF6. In recent study, the k – ε realizable model has been used for turbulence modeling. For non-adiabatic condition, chemical reaction is dissolved by utilizing probability density function along with laminar... 

    A misbehavior‐tolerant multipath routing protocol for wireless Ad hoc networks [electronic resource]

    , Article International Journal of Research in Wireless Systems (IJRWS) ; Vol. 2, Issue 9, pp. , Sep. 2013 Sedghi, H. (Haniyeh) ; Pakravan, Mohammad Reza ; Aref, Mohammad Reza ; Sharif University of Technology
    Abstract
    Secure routing is a major key to service maintenance in ad hoc networks. Ad hoc nature exposes the network to several types of node misbehavior or attacks. As a result of the resource limitations in such networks nodes may have a tendency to behave selfishly. Selfish behavior can have drastic impacts on network performance. We have proposed a Misbehavior-Tolerant Multipath Routing protocol (MTMR) which detects and punishes all types of misbehavior such as selfish behavior, wormhole, sinkhole and grey-hole attacks. The protocol utilizes a proactive approach to enforce cooperation. In addition, it uses a novel data redirection method to mitigate the impact of node misbehavior on network... 

    Theoretical and Experimental Study to Conversion of AUC to UO2 by Microwave Heating

    , Ph.D. Dissertation Sharif University of Technology Labbaf, Mohammad Hossein (Author) ; Otukesh, Mohammad (Supervisor) ; Ghannadi Maragheh, Mohammad (Co-Advisor) ; Ghasemi, Mohammad Reza (Co-Advisor)

    SAR Imaging Using the TomoSAR Technique to Resolve Multiple Scatterers

    , M.Sc. Thesis Sharif University of Technology Omati, Mohammad Mahdi (Author) ; Bastani, Mohammad Hassan (Supervisor) ; Karbasi, Mohammad (Co-Supervisor)
    Abstract
    During the last few years, the study of urban environment structures is considered as a research field of interest in remote sensing. In satellite observations of the earth's surface, continuous imaging in terms of time and space has caused the remote sensing technique to be proposed as a useful and efficient tool for the analysis of urban areas. Obtaining quantitative spatial information from the urban environment in fields such as determining the height of buildings plays an essential role in urban planning, monitoring damage to buildings, establishing communication bases and digital cities. During the last two decades, the use of Tomosar approach in order to reconstruct the structures of... 

    Estimating Possible Effects of Subsidies in Competition and Development of Fixed Broadband Internet

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Mohammad Ali (Author) ; Vesal, Mohammad (Supervisor) ; Rahmati, Mohammad Hossein (Supervisor)
    Abstract
    In this work, the dynamic competition between firms providing internet services is studied. The framework is Markov equilibrium whereby structural parameters are obtained using two-step estimations, allowing for analyzing the situation in case of subsidies for service upgrade. The results show that such subsidy has little effect on the number of firms while increasing the number of fast firms  

    Estimating Price Elasticity of Natural Gas Demand in Iran's Residential Sector: A Regression Discontinuity Approach

    , M.Sc. Thesis Sharif University of Technology Makhsousi, Mohammad Hossein (Author) ; Rahmati, Mohammad Hossein (Supervisor) ; Vesal, Mohammad (Supervisor)
    Abstract
    Estimating the price elasticity of gas demand involves complexities depending on the gas market structure and pricing mechanisms in different countries. Distinguishing between supply and demand shocks and block pricing are among the main challenges that can cause endogeneity in elasticity estimates. Iran's domestic gas network, one of the largest and most extensive household gas markets, is divided into five climatic zones based on weather conditions. The pricing steps for these five climates during the five cold months are such that a customer in a warmer climate pays higher prices. Conversely, the pricing steps for the seven warm months are the same for all climates. This policy creates a... 

    Estimate the Effect of Religiosity on Voter Turnout

    , M.Sc. Thesis Sharif University of Technology Jarrahi, Mohammad Mahdi (Author) ; Rahmati, Mohammad Hossein (Supervisor) ; Vesal, Mohammad (Supervisor)
    Abstract
    The correlation between religious adherence and voter turnout is widely studied. However, whether the relation is causal is an open question. We use Household Expenditures and Income Survey (HEIS) data in Iran, which encompasses nine distinct religious expenditures. These expenditures have low correlation with each other and represent different aspects of religious adherence. We use Imamzadeh (some historical holy shrines) as Instruments to estimate the causal effect of religious expenditures on voter turnout. The results reveal that religious expenditures influence both presidential and parliamentary voter turnout, with a notably stronger impact on presidential elections  

    Joint Optimization of Computation Offloading and Resource Allocation in Mobile Edge Computing Networks

    , M.Sc. Thesis Sharif University of Technology Shokouhi, Mohammad Hossein (Author) ; Pakravan, Mohammad Reza (Supervisor) ; Hadi, Mohammad (Co-Supervisor)
    Abstract
    Mobile edge computing (MEC) is a promising technology that aims to resolve cloud computing’s issues by deploying computation resources at the edge of mobile network and in the proximity of users. The advantages of MEC include reduced latency, energy consumption, and load on access and mobile core networks, to name but a few. Despite all the aforementioned advantages, the mobility of mobile network users causes the traditional MEC architecture to suffer from several issues, such as decreased efficiency and frequent service interruption. One of the methods to manage users’ mobility is virtual machine (VM) migration, where the VM containing the user’s task is migrated to somewhere closer to...