Loading...
Search for:
prochowicz--d
0.176 seconds
Total 1634 records
Efficient, hysteresis-free, and flexible inverted perovskite solar cells using all-vacuum processing.Efficient, hysteresis-free, and flexible inverted perovskite solar cells using all-vacuum processing
, Article Solar RRL ; 2020 ; Yadav, P ; Prochowicz, D ; Tavakoli, R ; Sharif University of Technology
Wiley-VCH Verlag
2020
Abstract
The fabrication of efficient perovskite solar cells (PSCs) using all-vacuum processing is still challenging due to the limitations in the vacuum deposition of the hole transporting layer (HTL). Herein, inverted PSCs using copper (II) phthalocyanine (CuPC) as an ideal alternative HTL for vacuum processing are fabricated. After proper optimization, a PSC with a power conversion efficiency (PCE) of 20.3% is achieved, which is much better than the PCEs (16.8%) of devices with solution-based CuPC. As it takes a long time to dissolve CuPC in the solution-based device, the evaporation approach has better advantage in terms of fast processing. In addition, the device with the evaporated CuPC HTL...
Surface modification of a hole transporting layer for an efficient perovskite solar cell with an enhanced fill factor and stability
, Article Molecular Systems Design and Engineering ; Volume 3, Issue 5 , 2018 , Pages 717-722 ; 20589689 (ISSN) ; Tavakoli, R ; Prochowicz, D ; Yadav, P ; Saliba, M ; Sharif University of Technology
2018
Abstract
The improvement of the quality of the hole transporting layer (HTL) plays a key role in the fabrication of highly efficient and stable perovskite solar cells (PSCs). Here, we used rubrene as a surface treatment agent on top of a spiro HTL. We found that rubrene can cover the pinholes of the spiro layer and provide an excellent contact layer for planar PSCs. Based on this modification, mobile gold ions from the metal electrode are prevented from diffusing through the HTL hindering the degradation of PSCs. The optimized device shows a maximum power conversion efficiency (PCE) of 19.87% and a 79% fill factor (FF), which are higher than the 17.98% PCE and 72% FF of the reference device. In...
Multilayer evaporation of MAFAPbI3-xClx for the fabrication of efficient and large-scale device perovskite solar cells
, Article Journal of Physics D: Applied Physics ; Volume 52, Issue 3 , 2019 ; 00223727 (ISSN) ; Yadav, P ; Prochowicz, D ; Tavakoli, R ; Saliba, M ; Sharif University of Technology
Institute of Physics Publishing
2019
Abstract
FAPbI3 perovskites are excellent candidates for fabrication of perovskite solar cells (PSCs) with high efficiency and stability. However, these perovskites exhibit phase instability problem at room temperature. In this work, to address this challenge we use methylammonium chloride (MACl) as an additive and employed a layer-by-layer thermal evaporation technique to fabricate high-quality perovskite films on a large scale of 25 cm2. The optimized perovskite films show high crystallinity with large grains in the μm-range and reveals phase stability due to the presence of MACl after the annealing process. Finally, we achieved PSCs with 17.7% and 15.9% for active areas of 0.1 cm2 and 0.8 cm2,...
A Dopant-free hole transporting layer for efficient and stable planar perovskite solar cells
, Article Physica Status Solidi - Rapid Research Letters ; Volume 14, Issue 7 , 2020 ; Si, H ; Yadav, P ; Prochowicz, D ; Tavakoli, R ; Sharif University of Technology
Wiley-VCH Verlag
2020
Abstract
Herein, a new dopant-free organic material, PV2000, as a stable hole transporting layer (HTL) for the fabrication of stable and efficient perovskite solar cells (PSCs) is introduced. For this purpose, planar PSCs using a triple-A cation perovskite composition are fabricated and the commonly used 2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (spiro-OMeTAD) HTL is replaced by dopant-free PV2000 polymer. The characterization results disclose that the PV2000 has a great thermal stability, good hole mobility, and suitable band alignment that matches well with the valence band of triple-A cation perovskite. After proper optimization of PV2000 film thickness, a planar PSC...
Oxygen plasma-induced p-type doping improves performance and stability of PbS quantum dot solar cells
, Article ACS Applied Materials and Interfaces ; Volume 11, Issue 29 , 2019 , Pages 26047-26052 ; 19448244 (ISSN) ; Tavakoli, R ; Yadav, P ; Prochowicz, D ; Saliba, M ; Tavakoli, M. M ; Sharif University of Technology
American Chemical Society
2019
Abstract
PbS quantum dots (QDs) have been extensively studied for photovoltaic applications, thanks to their facile and low-cost fabrication processing and interesting physical properties such as size dependent and tunable band gap. However, the performance of PbS QD-based solar cells is highly sensitive to the humidity level in the ambient air, which is a serious obstacle toward its practical applications. Although it has been previously revealed that oxygen doping of the hole transporting layer can mitigate the cause of this issue, the suggested methods to recover the device performance are time-consuming and relatively costly. Here, we report a low-power oxygen plasma treatment as a rapid and...
Efficient and less-toxic indium-doped mapbi3 perovskite solar cells prepared by metal alloying technique
, Article Solar RRL ; Volume 6, Issue 9 , 2022 ; 2367198X (ISSN) ; Fazel, Z ; Tavakoli, R ; Akin, S ; Satapathi, S ; Prochowicz, D ; Yadav, P ; Sharif University of Technology
John Wiley and Sons Inc
2022
Abstract
Perovskite materials with ABX3 structure (A: organic, B: metal, and X: halides) have attracted tremendous attention due to their outstanding optoelectronic properties. Herein, a novel approach is developed using chemical vapor deposition (CVD), i.e., metal alloying of halide-perovskite domain via ion-transfer (MAHDI) for the growth of high-quality perovskite films, grown directly from a metal precursor. This technique easily enables us to replace the toxic Pb metal (B site) with other metals using alloying approach. Using the proposed approach, we fabricated stable and efficient Pb–In perovskite solar cells (PSCs) with a maximum power conversion efficiency (PCE) of 21.2%, which is more...
Atomic layer deposition of an effective interface layer of tin for efficient and hysteresis-free mesoscopic perovskite solar cells
, Article ACS Applied Materials and Interfaces ; Volume 12, Issue 7 , 2020 , Pages 8098-8106 ; Tavakoli, M. M ; Prochowicz, D ; Yadav, P ; Lote, S. S ; Bhoite, S. P ; Nimbalkar, A ; Hong, C. K ; Sharif University of Technology
American Chemical Society
2020
Abstract
Perovskite solar cells (PSCs) have experienced outstanding advances in power conversion efficiencies (PCEs) by employing new electron transport layers (ETLs), interface engineering, optimizing perovskite morphology, and improving charge collection efficiency. In this work, we study the role of a new ultrathin interface layer of titanium nitride (TiN) conformally deposited on a mesoporous TiO2 (mp-TiO2) scaffold using the atomic layer deposition method. Our characterization results revealed that the presence of TiN at the ETL/perovskite interface improves the charge collection as well as reduces the interface recombination. We find that the morphology (grain size) and optical properties of...
Reducing ion migration in methylammonium lead tri-bromide single crystal via lead sulfate passivation
, Article Journal of Applied Physics ; Volume 127, Issue 18 , April , 2020 ; Parikh, N ; Kumari, H ; Pandey, M. K ; Kumar, M ; Prochowicz, D ; Kalam, A ; Tavakoli, M. M ; Yadav, P ; Sharif University of Technology
American Institute of Physics Inc
2020
Abstract
Surface passivation of organic-inorganic halide perovskites (OIHPs) is a crucial step to annihilate the surface defects and to control the deteriorated ion migration phenomenon. Here, we study the role of lead sulfate (PbSO4) as an effective passivator in OIHP single crystals (SCs). Using impedance spectroscopy, we evaluate the ion migration and electrical properties of lead sulfate-passivated methylammonium lead tri-bromide (MAPbBr3) SCs. We found that the low-frequency impedance response that is assigned to the ionic motion in the MAPbBr3 SC is strongly affected by the inorganic PbSO4 surface treatment. The activation energy corresponding to the ion migration of MAPbBr3 SC is increased...
Double layer mesoscopic electron contact for efficient perovskite solar cells
, Article Sustainable Energy and Fuels ; Volume 4, Issue 2 , 2020 , Pages 843-851 ; Yadav, P ; Tavakoli, M. M ; Prochowicz, D ; Nimbalkar, A ; Bhoite, S. P ; Bhosale, P. N ; Hong, C. K ; Sharif University of Technology
Royal Society of Chemistry
2020
Abstract
Interface engineering has emerged as a great strategy for fabrication of high efficiency and stable perovskite solar cells (PSCs). Here, we deposit a thin layer of ZnS as a buffer layer at the interface of the perovskite absorber and electron transporting layer (ETL) using the atomic layer deposition (ALD) process. The impact of the ZnS layer on the photovoltaic characteristics of PSCs was investigated by comparison of two mesoscopic configurations, in which the ZnS layer is grown on compact TiO2 and on mesoporous TiO2 surfaces. Our results revealed that the addition of an ultrathin ZnS layer between the perovskite and ETL drastically improves the charge extraction properties and reduces...
Elucidation of charge recombination and accumulation mechanism in mixed perovskite solar cells
, Article Journal of Physical Chemistry C ; Volume 122, Issue 27 , 2018 , Pages 15149-15154 ; 19327447 (ISSN) ; Turren Cruz, S. H ; Prochowicz, D ; Tavakoli, M. M ; Pandey, K ; Zakeeruddin, S. M ; Gratzel, M ; Hagfeldt, A ; Saliba, M ; Sharif University of Technology
American Chemical Society
2018
Abstract
Organic-inorganic perovskite solar cells (PSCs) have gained considerable attention owing to their impressive photovoltaic properties and simple device manufacturing. In general, PSC employs a perovskite absorber material sandwiched between an electron and hole selective transport layer optimized with respect to optimal band alignment, efficient charge collection, and low interfacial recombination. The interfaces between the perovskite absorber and respective selective contacts play a crucial role in determining photovoltaic performance and stability of PSCs. However, a fundamental understanding is lacking, and there is poor understanding in controlling the physical processes at the...
Engineering of perovskite materials based on formamidinium and cesium hybridization for high-efficiency solar cells
, Article Chemistry of Materials ; Volume 31, Issue 5 , 2019 , Pages 1620-1627 ; 08974756 (ISSN) ; Runjhun, R ; Tavakoli, M. M ; Yadav, P ; Saski, M ; Alanazi, A. Q ; Kubicki, D. J ; Kaszkur, Z ; Zakeeruddin, S. M ; Lewiński, J ; Grätzel, M ; Sharif University of Technology
American Chemical Society
2019
Abstract
Engineering the chemical composition of inorganic-organic hybrid perovskite materials is an effective strategy to boost the performance and operational stability of perovskite solar cells (PSCs). Among the diverse family of ABX3 perovskites, methylammonium-free mixed A-site cation CsxFA1-xPbI3 perovskites appear as attractive light-absorber materials because of their optimum band gap, superior optoelectronic property, and good thermal stability. Here, we develop a simple and very effective one-step solution method for the preparation of high-quality (Cs)x(FA)1-xPbI3 perovskite films upon the addition of excess CsCl to the FAPbI3 precursor solution. It is found that the addition of CsCl as a...
Blue and red wavelength resolved impedance response of efficient perovskite solar cells
, Article Sustainable Energy and Fuels ; Volume 2, Issue 11 , 2018 , Pages 2407-2411 ; 23984902 (ISSN) ; Tavakoli, M. M ; Turren Cruz, S. H ; Pandey, K ; Saliba, M ; Yadav, P ; Sharif University of Technology
Royal Society of Chemistry
2018
Abstract
The identification of recombination centers in perovskite solar cells is highly challenging. Here, we demonstrate the red and blue excitation wavelength resolved impedance response in state-of-the-art perovskite solar cells (PSCs) providing insights into charge recombination and ion accumulation. To get insight into the interfacial electronic characteristics, we fabricated PSCs with a planar architecture containing state-of-the-art triple-cation perovskite materials as absorber layers. The capacitance-frequency response under various blue and red illumination conditions were used to investigate interfacial charge accumulations and found that under high energy photons irradiation maximum...
Understanding the effect of chlorobenzene and isopropanol anti-solvent treatments on the recombination and interfacial charge accumulation in efficient planar perovskite solar cells
, Article Journal of Materials Chemistry A ; Volume 6, Issue 29 , 2018 , Pages 14307-14314 ; 20507488 (ISSN) ; Tavakoli, M. M ; Solanki, A ; Goh, T. W ; Pandey, K ; Sum, T. C ; Saliba, M ; Yadav, P ; Sharif University of Technology
2018
Abstract
Organic-inorganic lead halide perovskites have emerged as very promising semiconductors with efficiencies exceeding 22% making them a serious candidate for next generation solar cells. All current high performance perovskite solar cells (PSCs), including the most recent world records, were achieved using the so-called anti-solvent method. Here, an anti-solvent, typically chlorobenzene (CB), is used to induce rapid crystallisation of a liquid perovskite precursor resulting in highly homogenous, pinhole-free planar perovskite films. While this has yielded very impressive high-performance results, few efforts have been dedicated to the fundamental understanding of the anti-solvent method. In...
Charge Accumulation, Recombination, and Their Associated Time Scale in Efficient (GUA) x(MA)1-xPbI3-Based Perovskite Solar Cells
, Article ACS Omega ; Volume 4, Issue 16 , 2019 , Pages 16840-16846 ; 24701343 (ISSN) ; Tavakoli, M. M ; Alanazi, A. Q ; Trivedi, S ; Tavakoli Dastjerdi, H ; Zakeeruddin, S. M ; Grätzel, M ; Yadav, P ; Sharif University of Technology
American Chemical Society
2019
Abstract
Here, we study the influence of guanidinium (GUA) ions on the open-circuit voltage (Voc) in the (GUA)x(MA)1-xPbI3 based perovskite solar cells. We demonstrate that incorporation of GUA forms electronic and ionic accumulation regions at the interface of the electron transporting layer and perovskite absorber layer. Our electrochemical impedance spectroscopy results prove that the formed accumulation region is associated with the enhanced surface charge capacitance and photovoltage. Furthermore, we also demonstrate the influence of the GUA ions on the enhanced interfacial and bulk electronic properties due to more efficient charge transfer between the bulk and interfaces and the reduced...
Suppressing recombination in perovskite solar cells via surface engineering of TiO2 ETL
, Article Solar Energy ; Volume 197 , 2020 , Pages 50-57 ; Tavakoli, M. M ; Wolska Pietkiewicz, M ; Jędrzejewska, M ; Trivedi, S ; Kumar, M ; Zakeeruddin, S. M ; Lewiński, J ; Graetzel, M ; Yadav, P ; Sharif University of Technology
Elsevier Ltd
2020
Abstract
Hybrid perovskite solar cells (PSCs) have gained significant attention owing to their excellent physicochemical and photovoltaic properties. PSCs typically consist of a perovskite light absorber sandwiched between two carrier selective layers optimized with respect to optimal band alignment and low interfacial recombination. The quality of the perovskite layer and interfaces play major roles in the fabrication of high-performance PSCs. In the present work, we systematically investigate the planar structure PSCs based on TiO2 and TiO2/ZnO electron transport layers (ETLs), which provide deeper insight into the charge recombination and accumulation mechanisms. We show that the double-layer...
Data science and predictive analytics : biomedical and health applications using R
, Book
Springer International Publishing AG
2018
Synergistic effect of MEHPA on co-extraction of zinc and cadmium with DEHPA
, Article Minerals Engineering ; Volume 17, Issue 1 , 2004 , Pages 89-92 ; 08926875 (ISSN) ; Moradkhani, D ; Darvishi, D ; Askari, M ; Behnian, D ; Sharif University of Technology
2004
Abstract
Simultaneous extraction of zinc and cadmium by a mixture of di-2-ethyl hexyl phosphoric acid (DEHPA) and mono-2-ethyl hexyl phosphoric acid (MEHPA), and the synergistic effect of MEHPA on co-extraction of zinc and cadmium with DEHPA have been investigated. It was shown that the extraction of zinc and cadmium by DEHPA and/or MEHPA can be increased by an increase of pH. The results also illustrate that the pH0.5 of zinc, by increase in MEHPA from 0.1 to 8 vol%, did not vary significantly while that of cadmium varies from 0.63 to 2.4. In other words MEHPA prevents selective extraction of zinc from aqueous media containing both zinc and cadmium. Studies on the selective separation parameter...
MHD flow in a channel using new combination of order of magnitude technique and HPM [MHD tok u kanalu uporabom novih kombinacija tehnika grubog opisa vrijednosti i HPM]
, Article Tehnicki Vjesnik ; Volume 21, Issue 2 , April , 2014 , Pages 317-321 ; ISSN: 13303651 ; Ganji, D. D ; Rahni, M. T ; Sharif University of Technology
2014
Abstract
The present work is concerned with the steady incompressible flow through a parallel plate channel with stretching walls under an externally applied magnetic field. The governing continuity and Navier-Stokes equations are reduced to a fourth order nonlinear differential equation by using vorticity definition and similarity solution transformation. The obtained equations are solved by applying the analytical homotopy perturbation method (HPM). The method is called order of magnitude suggested for simplifying series solution to finite expression that is useful in engineering problems. The results are verified by comparing with numerical solutions and demonstrate a good accuracy of the obtained...
Analytical solution of nonlinear differential equations two oscillators mechanism using Akbari-Ganji method
, Article Modern Physics Letters B ; Volume 35, Issue 31 , 2021 ; 02179849 (ISSN) ; Hosseinzadeh, K ; Rahai, M ; Ganji, D. D ; Sharif University of Technology
World Scientific
2021
Abstract
In the last decade, many potent analytical methods have been utilized to find the approximate solution of nonlinear differential equations. Some of these methods are energy balance method (EBM), homotopy perturbation method (HPM), variational iteration method (VIM), amplitude frequency formulation (AFF), and max-min approach (MMA). Besides the methods mentioned above, the Akbari-Ganji method (AGM) is a highly efficient analytical method to solve a wide range of nonlinear equations, including heat transfer, mass transfer, and vibration problems. In this study, it was constructed the approximate analytic solution for movement of two mechanical oscillators by employing the AGM. In the derived...
A compiler for multi-key homomorphic signatures for Turing machines
, Article Theoretical Computer Science ; Volume 889 , 2021 , Pages 145-170 ; 03043975 (ISSN) ; Fiore, D ; Venturi, D ; Amini, M ; Sharif University of Technology
Elsevier B.V
2021
Abstract
At SCN 2018, Fiore and Pagnin proposed a generic compiler (called “Matrioska”) allowing to transform sufficiently expressive single-key homomorphic signatures (SKHSs) into multi-key homomorphic signatures (MKHSs) under falsifiable assumptions in the standard model. Matrioska is designed for homomorphic signatures that support programs represented as circuits. The MKHS schemes obtained through Matrioska support the evaluation and verification of arbitrary circuits over data signed from multiple users, but they require the underlying SKHS scheme to work with circuits whose size is exponential in the number of users, and thus can only support a constant number of users. In this work, we propose...