Loading...
Search for:
rafiefard--n
0.133 seconds
Total 2986 records
A novel approach for microparticle separation based on dielectrophoresis method
, Article Biomedical Physics and Engineering Express ; Volume 5, Issue 3 , 2019 ; 20571976 (ISSN) ; Sasanpour, P ; Fardindoost, S ; Irajizad, A ; Sharif University of Technology
Institute of Physics Publishing
2019
Abstract
A novel approach for particles size separation based on dielectrophoresis (DEP) method is introduced and analyzed both computationally and experimentally. The proposed technique has been utilized for the separation of polystyrene (PS) particles with 8, 6 and 2 μm diameters passing through microchannels with planar electrodes. The performance of the technique has been computationally analyzed using the finite element method (FEM). Considering the structure of the planar electrodes, we propose an approach based on applying an electric potential between one of the global electrodes, and a needle touched the top of the cell suspension. Results of both simulation and experiment show that by...
Fabrication of Gas Nanosensor based on 2D Nanostructure Titanium trisulfide/Graphene Heterojunction
, Ph.D. Dissertation Sharif University of Technology ; Iraji Zad, Azam (Supervisor) ; Sasanpour, Pezhman (Supervisor) ; Esfandiar, Ali (Co-Supervisor)
Abstract
Titanium trisulfide (TiS3), a transition metal chalcogenide, bears the potential to replace silicon, when taking the form of nanoflakes, due to its favorable band gap and optical response. In this work, first we investigate the response of TiS3 nanoflakes to gas detection through a careful quantum computational approach and a few succinct measurements. The computations are benchmarked and compared with a relevant experiment at each step, where their results/conclusions are discussed. The most stable surface of TiS3 particles is determined to (001), in agreement with the literature. The adsorption of 5 gas molecules is characterized through formulating and estimating their adsorption...
A graphene/TiS3 heterojunction for resistive sensing of polar vapors at room temperature
, Article Microchimica Acta ; Volume 187, Issue 2 , 2020 ; Iraji zad, A ; Esfandiar, A ; Sasanpour, P ; Fardindoost, S ; Zou, Y ; Haigh, S. J ; Hosseini Shokouh, S. H ; Sharif University of Technology
Springer
2020
Abstract
The room temperature polar vapor sensing behavior of a graphene-TiS3 heterojunction material and TiS3 nanoribbons is described. The nanoribbons were synthesized via chemical vapor transport (CVT) and their structure was investigated by scanning electron microscopy, high resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, Raman and Fourier transform infrared spectroscopies. The gas sensing performance was assessed by following the changes in their resistivities. Sensing devices were fabricated with gold contacts and with lithographically patterned graphene (Gr) electrodes in a heterojunction Gr-TiS3-Gr. The gold contacted TiS3 device has a...
Recent activities in science and technology and the progress of women in physics in the last three years in Iran
, Article AIP Conference Proceedings, Stellenbosch ; Volume 1517 , 2013 , Pages 108-109 ; 0094243X (ISSN); 9780735411388 (ISBN) ; Azad, M. T ; Mahmoudi, N ; Izadipanah, N ; Eshghi, N ; Sharif University of Technology
2013
Abstract
For the 4th IUPAP International Conference of Women in Physics, we report on activities in science and engineering in Iran, and conditions for women in physics, in the three years since the 3rd IUPAP International Conference of Women in Physics was held in 2008. Iran has made prominent advancements and astonishing progress in laser technology, biotechnology, nanotechnology, genetics, computer software and hardware, and robotics. Iranian scientists have been very productive in several experimental fields, such as pharmaceutical, organic, and polymer chemistry. Conditions for women in physics have improved greatly in recent years. A project to improve the environment for learning physics, and...
Ab initio study of electronic effects in the ZnO/TiO2 core/shell interface: Application in dye sensitized solar cells
, Article RSC Advances ; Vol. 4, issue. 1 , April , 2014 , p. 301-307 ; Nafari, N ; Taghavinia, N ; Sharif University of Technology
2014
Abstract
Core/shell structure of ZnO nanowires coated with a monolayer of TiO 2 is investigated using Density Functional Theory (DFT). The electronic states of the semiconductor is calculated and compared before and after coating of the TiO2 monolayer on a ZnO [101 0] surface. The effect of TiO2 coating induce surface states changes and shifts the conduction and valence band edges to higher energies. Our results, in qualitative agreement with the experimental work of Matt Law et al. (J. Phys. Chem. B, 110, 22652), show an increase in open circuit voltage and a decrease in short circuit current in ZnO/TiO2 core shell dye sensitized solar cells. Regarding the semiconductor density of states (DOS), TiO2...
Analyzing factors effective on the development of relationship commitment
, Article Proceedings of the 2012 International Conference on Artificial Intelligence, ICAI 2012, 16 July 2012 through 19 July 2012 ; Volume 1 , July , 2012 , Pages 398-404 ; 1601322186 (ISBN) ; 9781601322180 (ISBN) ; Lotfi, N ; Karami, N ; Sharif University of Technology
2012
Abstract
Due to the important role of commitment and trust in the relationship marketing, the factors which can directly result in a committed relationship along with the factors which can influence the commitment through influencing trust, according to the model of commitment and trust by (Morgan & Hunt, 1994) have been introduced and their level of importance has been investigated here. The article uses fuzzy cognitive maps (FCMs) in the proposed model to find the most important paths leading to relationship commitment. The FCM analyzes the responses of a group of 30 people including general practitioners in dentistry, managers of dental departments in some of the public clinics and hospitals who...
Morphological dependence of light backscattering from metallic back reflector films: Application in dye-sensitized solar cells
, Article Physica Status Solidi (A) Applications and Materials Science ; Volume 212, Issue 4 , January , 2015 , Pages 785-790 ; 18626300 (ISSN) ; Ghazyani, N ; Taghavinia, N ; Sharif University of Technology
Wiley-VCH Verlag
2015
Abstract
Conventionally, a film of TiO2 particles of 300 nm size is employed in Dye-sensitized solar cells (DSCs) as the back reflector film to enhance the light harvesting. Perfect reflectance of silver in visible and near infrared motivates to investigate its potential as the material for the light back reflector film in DSCs. In this study, light back reflector films consisting of 300 nm-sized silver particles, as well as vacuum evaporated silver flat film, were fabricated and compared to 300 nm-sized rutile-type TiO2 particulate reflector film to study their optical aspects. Conventional TiO2 rutile-type particulate film demonstrates slightly lower performance...
Monolithic dye sensitized solar cell with metal foil counter electrode
, Article Organic Electronics ; Volume 57 , June , 2018 , Pages 194-200 ; 15661199 (ISSN) ; Taghavinia, N ; Ghazyani, N ; Sharif University of Technology
Elsevier B.V
2018
Abstract
Monolithic dye-sensitized solar cells are conventionally fabricated using carbon composite layer as the counter electrode. In the current research, the brittle carbon composite layer is replaced with a metal foil, aiming to decrease the device series resistance and using less catalyst material in counter electrode. This metallic structure has also an advantage of mechanical strength and decreases the fabrication complexity. The counter electrode is prepared by electrodepositing Cr film followed by electrodepositing Pt nanoparticles on a metal foil. As the porous spacer layer, different composite layers of SiO2, TiO2, and Al2O3 are investigated and the best results are obtained for TiO2...
A compact versatile microbial fuel cell from paper
, Article ASME 2013 11th Int. Conf. on Fuel Cell Science, Eng. and Technology Collocated with the ASME 2013 Heat Transfer Summer Conf. and the ASME 2013 7th Int. Conf. on Energy Sustainability, FUELCELL 2013 ; 2013 ; 9780791855522 (ISBN) ; Hashemi, N ; Hashemi, N ; Sharif University of Technology
2013
Abstract
Microbial fuel cells (MFCs) have been a potential green energy source for a long time but one of the problems is that either the technology must be used on a large scale or special equipment have been necessary to keep the fuel cells running such as syringe pumps. Paper-based microbial fuel cells do not need to have a syringe pump to run and can run entirely by themselves when placed in contact with the fluids that are necessary for it to run. Paper-based microbial fuel cells are also more compact than traditional MFCs since the device doesn't need any external equipment to run. The goal of this paper is to develop a microbial fuel cell that does not require a syringe pump to function. This...
Decentralized model predictive voltage control of islanded DC microgrids
, Article 11th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2020, 4 February 2020 through 6 February 2020 ; 2020 ; Mahdian Dehkordi, N ; Sadati, N ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2020
Abstract
This paper proposes a novel decentralized control approach for islanded direct-current (DC) microgrids (MGs) based on model predictive control (MPC) to regulate the distributed generation unit (DGU) output voltages, i.e. the voltages of the point of common coupling (PCC). A local controller is designed for each DGU, in the presence of uncertainties, disturbances, and unmodeled dynamics. First, a discrete-time state-space model of an MG is derived. Afterward, an MPC algorithm is designed to perform the PCC voltage control. The proposed MPC scheme ensures that the PCC voltages remain within an acceptable range. Several simulation studies have been conducted to illustrate the effectiveness of...
Intelligent optimal feed-back torque control of a 6DOF surgical rotary robot
, Article 11th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2020, 4 February 2020 through 6 February 2020 ; 2020 ; Ebrahimi Toulkani, N ; Zhilakzadeh, N ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2020
Abstract
Sophisticated surgeons are widely indicating the use of surgical robots in order to reject human error, increase precision, and speed. Among well-known robotic mechanisms, parallel robots are broadly more investigated regarding their special characters as higher acceleration, speed, and accuracy, and less weight. Specific surgical procedures confine, and restrict their workspace, while controlling and validating the robots are complicated regarding to their complex dynamic. To this end, in this paper, a 6-DOF robot, with rotary manipulators, is designed and controlled. Addressing nonlinearity of parallel robots, an innovative methodology is formulated to robustly penalize the error of...
Semi-Real evaluation, and adaptive control of a 6DOF surgical robot
, Article 11th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2020, 4 February 2020 through 6 February 2020 ; 2020 ; Ebrahimi Toulkani, N ; Zhilakzadeh, N ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2020
Abstract
Sophisticated surgeons are widely indicating the use of surgical robots in order to reject human error, increase precision, and speed. Among well-known robotic mechanisms, parallel robots are broadly more investigated regarding their special characters as higher acceleration, speed, and accuracy, and less weight. Specific surgical procedures confine and restrict their workspace, while controlling and validating the robots are complicated based on their complex dynamic. To this end, in this paper, a 6-DOF robot, with linear manipulators, is designed and controlled. Addressing the inherent nonlinearity of the robot mechanism, an adaptive PID manipulator is employed and validated with nonlinear...
Modeling superconductive fault current limiter using constructive neural networks
, Article 2007 IEEE International Symposium on Industrial Electronics, ISIE 2007, Caixanova - Vigo, 4 June 2007 through 7 June 2007 ; 2007 , Pages 2859-2863 ; 1424407559 (ISBN); 9781424407552 (ISBN) ; Sadati, N ; Hosseini, M. N ; Sharif University of Technology
2007
Abstract
Although so many advances have been proposed in the field of artificial intelligence and superconductivity, there are few reports on their combination. On the other hand, because of the nonlinear and multivariable characteristics of the superconductive elements and capabilities of neural networks in this field, it seems useful to apply the neural networks to model and control the superconductive phenomena or devices. In this paper, a new constructive neural network (CNN) trained by two different optimization algorithms; back-propagation and genetic algorithm, is proposed which models the behavior of the superconductive fault current limiters (SFCLs). Simulation results show that the proposed...
Satellite attitude tracking using optimal neuro-controller
, Article 2003 IEEE Aerospace Conference, Big Sky, MT, 8 March 2003 through 15 March 2003 ; Volume 6 , 2003 , Pages 2663-2669 ; 1095323X (ISSN); 078037651X (ISBN); 9780780376519 (ISBN) ; Sadati, N ; Tehrani, N. D ; Sharif University of Technology
2003
Abstract
In this paper, a new control strategy for optimal attitude tracking control of a multivariable satellite system has been presented. The approach is based on a Multilayer Perceptron Neural Network (MLPNN) and a classical PD Controller for its initial stabilization. It is shown how the network can be employed as a multivariable self-organizing and self-learning controller in conjunction with a PD controller for attitude control of a satellite. By using three thrusters and quaternion for kinematics representation, the attitude dynamics of the satellite has been presented. In contrast to the previous classical approaches, it is shown how this controller can be carried out in an on-line manner...
Effect of heat treatment cycle on the mechanical properties of machinable austempered ductile iron
, Article 16th International Metallurgical and Materials Conference, METAL 2007, 22 May 2007 through 24 May 2007 ; 2007 ; Baghersaee, N ; Varahram, N ; Hanumantha Rao, M ; Rao, G. V.S. N ; Sharif University of Technology
TANGER spol. s r.o
2007
Abstract
ADI have been used for a wide variety of application in automotive,rail,and heavy engineering industry because of its excellent mechanical properties such as high strength with good ductility,good wear resistance,and good fatigue properties. The properties of austempered ductile iron are dependent on both chemistry and heat treatment, which has lead to invention of MADI (machinable austempered ductile iron). MADI is a new class of ductile iron with superior mechanical property than regular ductile iron with the same machinability characteristic. In this study Different cycles of austempering process (austenitization and austempering cycle) applied Due to the effect of heat treatment cycle on...
Effect of heat treatment cycle on the mechanical properties of machinable austempered ductile iron
, Article 24th ASM International Heat Treating Conference and Exposition, Detroit, MI, 17 September 2007 through 19 September 2007 ; 2007 , Pages 323-327 ; 9781604239300 (ISBN) ; Baghersaee, E. N ; Varahram, N ; Rao, M. H ; Rao, G. V. S. N ; Sharif University of Technology
2007
Abstract
ADI have been used for a wide variety of applications in automotive, rail, and heavy engineering industry because of its excellent mechanical properties such as high strength with good ductility, good wear resistance, and good fatigue properties. The properties of austempered ductile iron are dependent on both chemistry and heat treatment, which has lead to invention of MADI (machinable austempered ductile iron). MADI is a new class of ductile iron with superior mechanical property than regular ductile iron with the same machinability characteristic. In this study Different cycle of austempering process (austenitization and austempering cycle) applied Due to the effect of heat treatment...
Dynamic relay selection and resource allocation in cooperative networks based on OFDM
, Article 17th European Wireless Conference 2011, EW 2011 ; 2011 , Pages 328-332 ; (Print ISBN): 978-3-8007-3343-9 ; Alizadeh, N. N ; Razavizadeh, S. M ; Sharif University of Technology
2011
Abstract
In this paper, we are planning to introduce a new method for relay selection and resource allocation in OFDM-based cooperative networks. Up to now, there have been relatively few works clearly concentrating on the combination of relay selection and resource allocation in such networks. In our work, a network with a single transmitter, a single receiver and a group of relays is considered. Relays work on Amplify and Forward (AF) method and there is no direct link between the transmitter and the receiver. The optimization problem is to maximize the throughput of the receiver with constraints on the amounts of the power of the transmitter and relays, and subcarriers. We will introduce an...
Wrist-RoboHab: A robot for treatment and evaluation of brain injury patients
, Article IEEE International Conference on Rehabilitation Robotics, 27 June 2011 through 1 July 2011, Zurich ; 2011 ; 19457898 (ISSN) ; 9781424498628 (ISBN) ; Farahmand, F ; Ansari, N. N ; Sharif University of Technology
2011
Abstract
This article, introduces a new haptic robot, wrist-RoboHab, for upper limb rehabilitation of post stroke, orthopedic and Parkinson patients., The robot is designed for hand movement therapy and could be used for both treatment and evaluation purposes in three operational states; forearm supination/pronation, wrist flexion/extension and ulnar/radial deviation. At first the mechanical design and control system are described. Then the results of a case study are demonstrated. Clinical results, showed an improvement in Fugle-Meyer, AROM, power and the biomechanical assessment of the spasticity in a chronic patient. Furthermore, it was approved that the robot can have a good interaction with...
Investigation of the effect of tungsten substitution on microstructure and abrasive wear performance of in situ vc-reinforced high-manganese austenitic steel matrix composite
, Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 44, Issue 8 , 2013 , Pages 3826-3835 ; 10735623 (ISSN) ; Karimzadeh, N ; Varahram, N ; Davami, P ; Sharif University of Technology
2013
Abstract
Particulate VC-reinforced high-manganese austenitic steel matrix composites with different vanadium and tungsten contents were synthesized by conventional alloying and casting route. Microstructural characterizations showed that the composites processed by in situ precipitation of the reinforcements were composed of V8C7 particulates distributed in an austenitic matrix. It was observed that addition of tungsten to austenite increases work-hardening rate of subsurface layer during pin-on disk wear test. The maximum abrasive wear resistance was achieved at tungsten content equal to 2 wt pct. However, excessive addition of tungsten promoted the formation of W 3C phase and reduced the abrasive...
Effect of graphene oxide nanosheets on the physico-mechanical properties of chitosan/bacterial cellulose nanofibrous composites
, Article Composites Part A: Applied Science and Manufacturing ; Volume 85 , 2016 , Pages 113-122 ; 1359835X (ISSN) ; Eslahi, N ; Mahmoudi, N ; Simchi, A ; Sharif University of Technology
Elsevier Ltd
2016
Abstract
In this work, novel chitosan/bacterial cellulose (CS/BC) nanofibrous composites reinforced with graphene oxide (GO) nanosheets are introduced. As cell attachment and permeability of nanofibrous membranes highly depend on their fiber diameter, the working window for successful electrospinning to attain sound nanofibrous composites with a minimum fiber diameter was determined by using the response surface methodology. It is shown that the addition of GO nanosheets to CS/BC significantly reduces the average size of the polymeric fibers. Their mechanical properties are also influenced and can be tailored by the concentration of GO. Fourier transform infrared spectroscopy reveals hydrogen bonding...