Loading...
Search for: rahimi--mazaher
0.122 seconds

    Development of a 3D multigroup program for dancoff factor calculation in pebble bed reactors

    , Article Annals of Nuclear Energy ; Vol. 72, issue , 2014 , pp. 311-319 ; ISSN: 03064549 Ghaderi Mazaher, M ; Vosoughi, N ; Sharif University of Technology
    2014
    Abstract
    The evaluation of multigroup constants in reactor calculations depends on several parameters. One of these parameters is the Dancoff factor which is used for calculating the resonance integral and flux depression in the resonance region in heterogeneous systems. In the current paper, a computer program (MCDAN-3D) is developed for calculating three dimensional black and gray Dancoff coefficients, based on Monte Carlo, escape probability and neutron free flight methods. The developed program is capable to calculate the Dancoff factor for an arbitrary arrangement of fuel and moderator pebbles. Moreover this program can simulate fuels with homogeneous and heterogeneous compositions. It might... 

    Development of a 3D program for calculation of multigroup Dancoff factor based on Monte Carlo method in cylindrical geometry

    , Article Annals of Nuclear Energy ; Volume 78 , 2015 , Pages 49-59 ; 03064549 (ISSN) Ghaderi Mazaher, M ; Vosoughi, N ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Evaluation of multigroup constants in reactor calculations depends on several parameters, the Dancoff factor amid them is used for calculation of the resonance integral as well as flux depression in the resonance region in the heterogeneous systems. This paper focuses on the computer program (MCDAN-3D) developed for calculation of the multigroup black and gray Dancoff factor in three dimensional geometry based on Monte Carlo and escape probability methods. The developed program is capable to calculate the Dancoff factor for an arbitrary arrangement of fuel rods with different cylindrical fuel dimensions and control rods with various lengths inserted in the reactor core. The initiative... 

    Development of a Multi-Dimensional and Multi-Group Code for Black and Gray Dancoff Factor Calculation Based on Monte Carlo Method in Various Geometries

    , M.Sc. Thesis Sharif University of Technology Ghaderi Mazaher, Meysam (Author) ; Vossoughi, Nasser (Supervisor)
    Abstract
    Most of the nuclear codes used equivalence between a homogeneous and heterogeneous region to calculate resonance shelf-shielding. when fuels are together in a lattice arrangement, As a good approximation in the resonance shelf-shielding calculation, one could only consider a single fuel lump and consider the effect of neighbor fuels with a correction factor, i.e. the Dancoff coefficient. So far, several methods have used for calculating the Dancoff coefficient, but accuracy of these methods did not improved. In this thesis a computer program (MCDAN-3D) is developed for calculation of the multi-dimension and multi-group black and gray Dancoff coefficient, based on Monte Carlo, escape... 

    A new approach for solution of time dependent neutron transport equation based on nodal discretization using MCNPX code with feedback

    , Article Annals of Nuclear Energy ; Volume 133 , 2019 , Pages 519-526 ; 03064549 (ISSN) Ghaderi Mazaher, M ; Salehi, A. A ; Vosoughi, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This paper proposes a new method for solving the time-dependent neutron transport equation based on nodal discretization using the MCNPX code. Most valid nodal codes are based on the diffusion theory with differences in approximating the leakage term until now. However, the Monte Carlo (MC) method is able to estimate transport parameters without approximations usual in diffusion method. Therefore, improving the nodal approach via the MC techniques can substantially reduce the errors caused by diffusion approximations. In the proposed method, the reactor core is divided into nodes of arbitrary dimensions, and all terms of the transport equation e.g. interaction rates and leakage ratio are... 

    A time dependent Monte Carlo approach for nuclear reactor analysis in a 3-D arbitrary geometry

    , Article Progress in Nuclear Energy ; Volume 115 , 2019 , Pages 80-90 ; 01491970 (ISSN) Mazaher, M. G ; Salehi, A. A ; Vosoughi, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A highly reliable tool for transient simulation is vital in the safety analysis of a nuclear reactor. Despite this fact most tools still use diffusion theory and point-kinetics that involve many approximation such as discretization in space, energy, angle and time. However, Monte Carlo method inherently overcomes these restrictions and provides an appropriate foundation to accurately calculate the parameters of a reactor. In this paper fundamental parameters like multiplication factor (K eff ) and mean generation time (t G ) are calculated using Monte Carlo method and then employed in transient analysis for computing the neutron population, proportional to K eff , during a generation time... 

    Implementation of a dynamic Monte Carlo method for transients analysis with thermal-hydraulic feedbacks using MCNPX code

    , Article Annals of Nuclear Energy ; Volume 130 , 2019 , Pages 240-249 ; 03064549 (ISSN) Ghaderi Mazaher, M ; Salehi, A. A ; Vosoughi, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Transient analysis which is vital in safety analysis requires a reliable calculation method. Most valid tools use diffusion theory with many approximations by now. However, the Monte Carlo method inherently overcomes these approximations and accurately calculates the parameters of a reactor. In this paper, a new time-dependent transport approach is described to simulate the nuclear reactor dynamic correctly using the MCNPX code. In this approach the fundamental parameters of a nuclear reactor like multiplication factor (K eff ) and mean generation time (t G ) are calculated using MCNPX code. They are then employed in the formulas to compute neutron population, proportional to K eff , during... 

    A new Monte Carlo approach for solution of the time dependent neutron transport equation based on nodal discretization to simulate the xenon oscillation with feedback

    , Article Annals of Nuclear Energy ; Volume 141 , 2020 Ghaderi Mazaher, M ; Salehi, A. A ; Vosoughi, N ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper a probabilistic methodology based on core nodalization is proposed to estimate the core power in the presence of xenon oscillation. A time-dependent Monte Carlo neutron transport code named MCSP-NOD is developed for dynamic analysis in arbitrary 3D geometries to simulate xenon oscillations as well as sub-critical condition with feedbacks. The new code is based on the approach adopted in MCNP-NOD which was previously introduced as a tool for core transient analysis using the MCNPX platform. As before, the core is divided into nodes of arbitrary dimensions, and all terms of the transport equation e.g. interaction rates, leakage ratio are estimated using the MC techniques.... 

    Modification of a dynamic monte carlo technique to simplify and accelerate transient analysis with feedback

    , Article Nuclear Science and Engineering ; 2021 ; 00295639 (ISSN) Ghaderi Mazaher, M ; Salehi, A. A ; Vosoughi, N ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    In this paper, a simpler approach compared to the existing approaches is developed to analyze nuclear reactor dynamics based on the explicit Monte Carlo method. A new population control method is also introduced to prevent neutron population growth and consequent computer memory shortages, which also increases simulation speed. The scheme is applied for time-dependent particle tracking in three-dimensional arbitrary geometries in the presence of feedbacks through a code named MCSP-Explicit. Changes in material density, as well as geometry dimensions, are also considered during simulation. MCSP-Explicit can be run with either continuous or multigroup data libraries, and it is further boosted... 

    Modification of a dynamic monte carlo technique to simplify and accelerate transient analysis with feedback

    , Article Nuclear Science and Engineering ; Volume 196, Issue 4 , 2022 , Pages 395-408 ; 00295639 (ISSN) Ghaderi Mazaher, M ; Salehi, A. A ; Vosoughi, N ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In this paper, a simpler approach compared to the existing approaches is developed to analyze nuclear reactor dynamics based on the explicit Monte Carlo method. A new population control method is also introduced to prevent neutron population growth and consequent computer memory shortages, which also increases simulation speed. The scheme is applied for time-dependent particle tracking in three-dimensional arbitrary geometries in the presence of feedbacks through a code named MCSP-Explicit. Changes in material density, as well as geometry dimensions, are also considered during simulation. MCSP-Explicit can be run with either continuous or multigroup data libraries, and it is further boosted... 

    Low Grade Heat Driven Multi-Effect Distillation and Desalination

    , Book Rahimi, Bijan ; Chua, Hui Tong
    Elsevier  2017
    Abstract
    Low Grade Heat Driven Multi-effect Distillation and Desalination describes the development of advanced multi-effect evaporation technologies that are driven by low grade sensible heat, including process waste heat in refineries, heat rejection from diesel generators or microturbines, and solar and geothermal energy. The technologies discussed can be applied to desalination in remote areas, purifying produced water in oil-and-gas industries, and to re-concentrate process liquor in refineries.
    This book is ideal for researchers, engineering scientists, graduate students, and industrial practitioners working in the desalination, petrochemical, and mineral refining sectors, helping them... 

    Analysis and data-based reconstruction of complex nonlinear dynamical systems : using the methods of stochastic processes

    , Book Rahimi Tabar, M. Reza
    Springer International Publishing  2019
    Abstract
    This book focuses on a central question in the field of complex systems: Given a fluctuating (in time or space), uni- or multi-variant sequentially measured set of experimental data (even noisy data), how should one analyse non-parametrically the data, assess underlying trends, uncover characteristics of the fluctuations (including diffusion and jump contributions), and construct a stochastic evolution equation?
    Here, the term "non-parametrically" exemplifies that all the functions and parameters of the constructed stochastic evolution equation can be determined directly from the measured data.
    The book provides an overview of methods that have been developed for the analysis of... 

    Tipping Cascades in Complex Networks: Dynamics and Control

    , M.Sc. Thesis Sharif University of Technology Shahrabi, Ali (Author) ; Rahimi Tabar, Mohammad Reza (Supervisor)
    Abstract
    Tipping points occur in diverse systems in various disciplines such as ecology, climate science, economy, sociology, and engineering. Critical thresholds in system parameters or state variables at which a tiny perturbation can lead to a qualitative change in the system exist in many subsystems in complex systems. These thresholds are called tipping points, and these subsystems are called tipping elements. Additionally, many systems with tipping points can be modeled as networks of coupled multistable subsystems. Domino-like tippings are called tipping cascades. Considering that these tipping cascades are primarily unprecedented, it is essential to study the dynamics and control of these... 

    A 3-D and Time Dependent Software for Particles Tracking Base on Monte Carlo Method

    , Ph.D. Dissertation Sharif University of Technology Ghaderi Mazaher, Meysam (Author) ; Salehi, Ali Akbar (Supervisor) ; Vosoughi, Naser (Co-Supervisor)
    Abstract
    A highly reliable tool for transient simulation is vital in the safety analysis of a nuclear reactor. Despite this fact most tools still use diffusion theory and point-kinetics that involve many approximations such as discretization in space, energy, angle and time. However, Monte Carlo method inherently overcomes these restrictions and provides an appropriate foundation to accurately calculate the parameters of a reactor. For this reason, in this thesis, a dynamic Monte Carlo code named MCSP (Monte Carlo dynamic Simulation of Particles tracking) is developed for both the steady state and time-dependent simulation of particle (neutrons, photons and electrons) tracking in an arbitrary 3D... 

    Effects of Higher Order Interactions and Data-Driven Stability Analysis in Tipping Networks

    , M.Sc. Thesis Sharif University of Technology Nikpanjeh, Fatemeh (Author) ; Rahimi Tabar, Rahimi Tabar (Supervisor)
    Abstract
    Recent studies in various fields such as the environment, climate, economics, and neuroscience have shown that many systems exhibit dynamic responses based on catastrophic shifts—sudden and unexpected changes in the system's state and behavior in response to environmental changes. One of the simplest cases of these shifts occurs when the dynamical bifurcation diagram of a system has a tipping point, which serves as a critical threshold for system parameters, allowing small disturbances to lead to significant changes in the system's state. Research on many natural systems has revealed that tipping elements as the subsystems of a complex system are not independent, and the tipping of one... 

    Capabilities, difficulties and obstacles for energy recovery from MSW’ as a sustainable option for waste management in Iran

    , Article WIT Transactions on Ecology and the Environment ; Vol. 186 , 16-18 December , 2014 , pp. 789-798 ; ISSN: 17433541 ; ISBN: 9781845648374 Rahimi, E ; Sharif University of Technology
    2014
    Abstract
    Increasing concerns about unbridled fossil fuel consumption and a growing generation of municipal solid waste (MSW) in Iran and related environmental challenges require adoption of more sustainable approaches in energy and waste management. Energy recovery from waste can play an important role to achieve environmentally sustainable development that has been defined for the country as a main policy. Iran’s growing urban population generates massive amounts of MSW that mostly end up in landfills. A population of 75 million is generating 50,000 tonnes of MSW every day that mostly are buried in landfills. Detrimental emissions from landfills and many other long-lasting environmental issues have... 

    Mixing performance of T, Y, and oriented Y-micromixers with spatially arranged outlet channel: evaluation with villermaux/dushman test reaction

    , Article Microsystem Technologies ; 2016 , Pages 1-14 ; 09467076 (ISSN) Rahimi, M ; Azimi, N ; Parsamogadam, M. A ; Rahimi, A ; Masahy, M. M ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    This study aims to investigate the micromixing performance of three basic types of spatial shaped micromixers. New configurations of T, Y, and oriented Y-spatial mixers were designed with change in the angles of the confluence and the outlet channel to achieve the efficient micromixing. These micromixers offer advantages that are not attainable with the typical types of these mixers. Experimental tests were carried out in the laminar flow regime and the mixing efficiency was evaluated using Villermaux/Dushman test reaction. The geometries of the channels were cylindrical with the length of 30 mm and the diameter of 800 μm. The experimental results show that the angle of outlet channel has a... 

    Mixing performance of T, Y, and oriented Y-micromixers with spatially arranged outlet channel: evaluation with Villermaux/Dushman test reaction

    , Article Microsystem Technologies ; Volume 23, Issue 8 , 2017 , Pages 3117-3130 ; 09467076 (ISSN) Rahimi, M ; Azimi, N ; Parsamogadam, M. A ; Rahimi, A ; Masahy, M. M ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    This study aims to investigate the micromixing performance of three basic types of spatial shaped micromixers. New configurations of T, Y, and oriented Y-spatial mixers were designed with change in the angles of the confluence and the outlet channel to achieve the efficient micromixing. These micromixers offer advantages that are not attainable with the typical types of these mixers. Experimental tests were carried out in the laminar flow regime and the mixing efficiency was evaluated using Villermaux/Dushman test reaction. The geometries of the channels were cylindrical with the length of 30 mm and the diameter of 800 μm. The experimental results show that the angle of outlet channel has a... 

    Low voltage ride-through capability improvement of DFIG-based wind turbines under unbalanced voltage dips

    , Article International Journal of Electrical Power and Energy Systems ; Vol. 60,Issue , 2014 , pp. 82-95 ; ISSN: 01420615 Rahimi, M ; Parniani, M ; Sharif University of Technology
    2014
    Abstract
    This paper proposes a competent and effective scheme to enhance the ride-through capability of DFIG-based wind turbines under unbalanced voltage dip conditions. The proposed method is realized through joint use of the rotor-side converter control and a three-phase stator damping resistor (SDR) placed in series with the stator windings. By means of an asymmetrical SDR idea, during the unbalanced voltage dip the SDR resistors are activated only in phase(s) experiencing low voltage. Then, the rotor current is controlled such that no unbalance voltage appears on the stator voltage. The proposed ride-through approach limits the peak values of the rotor inrush current, electromagnetic torque and... 

    Efficient control scheme of wind turbines with doubly fed induction generators for low-voltage ride-through capability enhancement

    , Article IET Renewable Power Generation ; Volume 4, Issue 3 , May , 2010 , Pages 242-252 ; 17521416 (ISSN) Rahimi, M ; Parniani, M ; Sharif University of Technology
    2010
    Abstract
    As the penetration of wind power in electrical power systems increases, it is required that wind turbines remain connected to the grid and actively contribute to the system stability during and after grid faults. This study proposes an efficient control strategy to improve the low-voltage ride-through (LVRT) capability in doubly fed induction generators (DFIGs). The proposed scheme consists of passive and active LVRT compensators. The passive compensator is based on a new crowbar arrangement located in series with stator windings. It considerably reduces the rotor inrush current at the instants of occurring and clearing the fault. The active LVRT compensator is realised through rotor voltage... 

    Dynamic behavior analysis of doubly-fed induction generator wind turbines - The influence of rotor and speed controller parameters

    , Article International Journal of Electrical Power and Energy Systems ; Volume 32, Issue 5 , June , 2010 , Pages 464-477 ; 01420615 (ISSN) Rahimi, M ; Parniani, M ; Sharif University of Technology
    2010
    Abstract
    This paper analytically investigates the effects of system and controller parameters and operating conditions on the dynamic and transient behavior of wind turbines (WTs) with doubly-fed induction generators (DFIGs) under voltage dips and wind speed fluctuations. Also, it deals with the design considerations regarding rotor and speed controllers. The poorly damped electrical and mechanical modes of the system are identified, and the effects of system parameters, and speed/rotor controllers on these modes are investigated by modal and sensitivity analyses. The results of theoretical studies are verified by time domain simulations. It is found that the dynamic behavior of the DFIG-based WT...